1
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
2
|
Farkhondeh T, Pourbagher-Shahri AM, Ashrafizadeh M, Folgado SL, Rajabpour-Sanati A, Khazdair MR, Samarghandian S. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 2020; 15:1792-1798. [PMID: 32246619 PMCID: PMC7513986 DOI: 10.4103/1673-5374.280300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The over-activated microglial cells induce neuroinflammation which has the main role in neurological disorders. The over-activated microglia can disturb neuronal function by releasing inflammatory mediators leading to neuronal dysfunctions and death. Thus, inhibition of over-activated microglia may be an effective therapeutic approach for modulating neuroinflammation. Experimental studies have indicated anti-neuroinflammatory effects of flavonoids such as green tea catechins. The current research was aimed to review the effect of green tea catechins in inhibiting microglial cells, inflammatory cascades, and subsequent neurological diseases.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Silvia Llorens Folgado
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | | | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center; Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Zbynovska K, Petruska P, Kalafova A, Ondruska L, Jurcik R, Chrastinova L, Tusimova E, Kovacik A, Capcarova M. Antioxidant status of rabbits after treatment with epicatechin and patulin. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Kim MJ, Je AR, Kim HJ, Huh YH, Kweon HS. Coat protein I depletion-associated Golgi fragmentation in an Alzheimer's disease model. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.984756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
5
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
6
|
Esmat AY, Said MM, Soliman AA, El-Masry KS, Badiea EA. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition 2013; 29:258-67. [DOI: 10.1016/j.nut.2012.06.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
|
7
|
Simos YV, Verginadis II, Toliopoulos IK, Velalopoulou AP, Karagounis IV, Karkabounas SC, Evangelou AM. Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity, in vivo. Redox Rep 2012; 17:181-6. [PMID: 22889828 DOI: 10.1179/1351000212y.0000000020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration. METHODS Twenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up). RESULTS Intra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity. DISCUSSION Boosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases.
Collapse
|
8
|
Zhong RZ, Xiao WJ, Zhou DW, Tan CY, Tan ZL, Han XF, Zhou CS, Tang SX. Effect of tea catechins on regulation of cell proliferation and antioxidant enzyme expression in H2 O2 -induced primary hepatocytes of goat in vitro. J Anim Physiol Anim Nutr (Berl) 2012; 97:475-84. [PMID: 22416977 DOI: 10.1111/j.1439-0396.2012.01288.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tea catechins (TC) are polyphenols that have potent antioxidant activity. The objectives of this study were to determine the effects of TC on antioxidant status of hepatocytes challenged with H2 O2 . Primary hepatocytes of goat were exposed to 1 mm H2 O2 without or with 5, 50 and 500 μg/ml TC. The cells were harvested at 48 h post-treatment to determine effects of TC on proliferation, apoptotic features and membrane integrity of cells, and expression of genes and activities of antioxidant enzymes. H2 O2 exposure caused damage to cells (p < 0.001). A lower concentration of TC (5 μg/ml) displayed a protective effect by inhibiting exorbitant cell proliferation and DNA degradation. Both H2 O2 exposure and TC pre-incubation affected expression of antioxidant enzymes at mRNA and protein levels (p < 0.001). The activities of catalase (CAT) (p = 0.027), CuZn-superoxide dismutase (CuZn-SOD) (p < 0.001) and glutathione peroxidase (GPx) (p < 0.001) increased with TC pre-incubation followed by H2 O2 challenge. Changes of CuZn-SOD activity induced by H2 O2 and TC basically paralleled the changes in the corresponding mRNA and protein levels, but the correlation in CAT and GPx expression displayed slightly different patterns at different concentrations of TC. These findings infer that oxidative stress can induce deleterious cellular responses and this unfavourable condition may be alleviated by treatment with TC.
Collapse
Affiliation(s)
- R Z Zhong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dias T, Liu B, Jones P, Houghton PJ, Mota-Filipe H, Paulo A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:485-92. [PMID: 22143153 DOI: 10.1016/j.jep.2011.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/19/2011] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE [corrected] Coreopsis tinctoria flowering tops infusion is traditionally used in Portugal for treating the symptoms of diabetes. Recent studies have revealed its antihyperglycemic activity when administered for 3 weeks to a STZ-induced glucose intolerance model in the rat and glucose tolerance regain was even clearer and pancreatic function recovery was achieved when administering Coreopsis tinctoria flavonoid-rich AcOEt fraction. In this study we aimed to evaluate the protective effect of Coreopsis tinctoria flowering tops aqueous extract, AcOEt fraction and the pure compounds marein and flavanomarein, against beta-cell injury, in a mouse insulinoma cell line (MIN6) challenged with pro-oxidant tert-butyl-hydroperoxide (tBHP) or cytokines. MATERIALS AND METHODS The protective effects of Coreopsis tinctoria flowering tops extracts and pure compounds were evaluated through pre-incubating MIN6 cells with samples followed by treatment with tBHP (400 μM for 2 h) after which viability was determined through ATP measurements. In order to assess whether plant extracts were involved in decreasing reactive oxygen species, superoxide anion production was determined through a lucigenin-enhanced chemiluminescent method. Lastly, the direct influence of Coreopsis tinctoria extracts and main compounds on cell survival/apoptosis was determined measuring caspase 3 and 7 cleavage induced by cytokines. RESULTS Coreopsis tinctoria flowering tops extracts (25-100 μg/mL) and pure compounds (200-400 μM), when pre-incubated with MIN6 cells did not present any cytotoxicity, instead they increased cell viability in a dose dependent manner when challenged with tBHP. Treatment with this pro-oxidant also showed a rise in superoxide radical anion formation in MIN6 cells. This increase was significantly reduced by treatment with superoxide dismutase enzyme (SOD) but not by pre-treatment with Coreopsis tinctoria flowering tops extracts. Caspase 3/7 activation measurements show that Coreopsis tinctoria flowering tops extracts, as well as marein and flavanomarein, significantly inhibit apoptosis. CONCLUSIONS Coreopsis tinctoria extracts and pure compounds show cytoprotection that seems to be due to inhibition of the apoptotic pathway, and not through a decrease on superoxide radical production.
Collapse
Affiliation(s)
- Teresa Dias
- i.Med-UL-Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease. Mol Neurodegener 2011; 6:45. [PMID: 21718498 PMCID: PMC3149591 DOI: 10.1186/1750-1326-6-45] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 06/30/2011] [Indexed: 01/21/2023] Open
Abstract
Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. Conclusion These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
Collapse
Affiliation(s)
- Xiao-Dong Pan
- Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CEW. Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 2009; 130:477-86. [PMID: 19501612 DOI: 10.1016/j.mad.2009.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 12/16/2022]
Abstract
The flavanol catechin is a ubiquitous metabolite within the plant kingdom. Several health benefits have previously been reported, however, to date, most attention has been devoted to gallated forms of catechin. This study utilized the nematode Caenorhabditis elegans to assess potential life expanding effects of non-gallated catechin. Longevity was observed at three different catechin concentrations, an effect that was neither linked to a specific temperature nor to the viability of the feeding bacteria. Taken all tests into account, hormesis, calorie restriction, as well as the presence of simple antioxidative or antibacterial effects could be excluded. Likewise, the insulin/IGF-1 like signaling pathway and the calmodulin kinase II pathway were not considered to play a major mechanic role. Moreover, stress resistance was enhanced without a marked alteration in reproductive behavior. In addition, lifespan tests with various stress and lifespan relevant mutant strains revealed that the life span extending phenotype was absent in mev-1, daf-2, akt-2 and nhr-8. Finally, catechin elicited a significant reduction in body length, a finding that is in line with the "Disposable Soma Theory". It is proposed that catechin modulates an energy-intensive stress response and repair system that results in reduced body length and an enhanced lifespan.
Collapse
Affiliation(s)
- Nadine Saul
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater & Stress Ecology, Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Chen X, Choi IY, Chang TS, Noh YH, Shin CY, Wu CF, Ko KH, Kim WK. Pretreatment with interferon-gamma protects microglia from oxidative stress via up-regulation of Mn-SOD. Free Radic Biol Med 2009; 46:1204-10. [PMID: 19439213 DOI: 10.1016/j.freeradbiomed.2009.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Microglial cells, resident macrophage-like immune cells in the brain, are exposed to intense oxidative stress under various pathophysiological conditions. For self-defense against oxidative injuries, microglial cells must be equipped with antioxidative mechanisms. In this study, we investigated the regulation of antioxidant enzyme systems in microglial cells by interferon-gamma (IFN-gamma) and found that pretreatment with IFN-gamma for 20 h protected microglial cells from the toxicity of various reactive species such as hydrogen peroxide (H(2)O(2)), superoxide anion, 4-hydroxy-2(E)-nonenal, and peroxynitrite. The cytoprotective effect of IFN-gamma pretreatment was abolished by the protein synthesis inhibitor cycloheximide. In addition, treatment of microglial cells with both IFN-gamma and H(2)O(2) together did not protect them from the H(2)O(2)-evoked toxicity. These results imply that protein synthesis is required for the protection by IFN-gamma. Among various antioxidant enzymes such as manganese or copper/zinc superoxide dismutase (Mn-SOD or Cu/Zn-SOD), catalase, and glutathione peroxidase (GPx), only Mn-SOD was up-regulated in IFN-gamma-pretreated microglial cells. Transfection with siRNA of Mn-SOD abolished both up-regulation of Mn-SOD expression and protection from H(2)O(2) toxicity by IFN-gamma pretreatment. Furthermore, whereas the activities of Mn-SOD and catalase were up-regulated by IFN-gamma pretreatment, those of Cu/Zn-SOD and GPx were not. These results indicate that IFN-gamma pretreatment protects microglial cells from oxidative stress via selective up-regulation of the level of Mn-SOD and activity of Mn-SOD and catalase.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP. Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 2008; 76:362-72. [DOI: 10.1016/j.bcp.2008.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 05/10/2008] [Accepted: 05/13/2008] [Indexed: 11/26/2022]
|
14
|
El-Belbas HI, M. Hassan H, M. Mantawy M. In vitro Genotoxic Effect of Anaesthetic Halothane on Rabbit Lymphocytes and the Protective Role of Vitamin A Supplementation. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajb.2008.153.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|