1
|
Liu WW, Wang F, Li C, Song XY, Otkur W, Zhu YY, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin relieves UVB-induced apoptosis of human skin cells by inhibiting the YAP-p73 pathway. Acta Pharmacol Sin 2022; 43:2156-2167. [PMID: 34912007 PMCID: PMC9343358 DOI: 10.1038/s41401-021-00826-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Excessive exposure to UVB induces skin diseases. Silibinin, a flavonolignan used for treating liver diseases, is found to be effective against UVB-caused skin epidermal and dermal cell damage. In this study we investigated the molecular mechanisms underlying. Human nonmalignant immortalized keratinocyte HaCaT cells and neonatal human foreskin fibroblasts HFFs were exposed to UVB irradiation. We showed that pre-treatment with silibinin dose-dependently decreased UVB-induced apoptosis of HaCaT cells. Furthermore, we showed that silibinin treatment inhibited nuclear translocation of YAP after UVB irradiation. Molecular docking analysis and DARTS assay confirmed the direct interaction of silibinin with YAP. Silencing YAP by siRNA had no influence on the survival of HaCaT cells, whereas inhibiting classical YAP-TEAD signaling pathway by siRNA targeting TEAD1 or its pharmaceutical inhibitor verteporfin further augmented UVB-induced apoptosis, suggesting that YAP-TEAD pathway was prosurvival, which did not participate in the protective effect of silibinin. We then explored the pro-apoptotic YAP-p73 pathway. p73 was upregulated in UVB-irradiated cells, but reduced by silibinin cotreatment. The mRNA and protein levels of p73 target genes (PML, p21 and Bax) were all increased by UVB but decreased by silibinin co-treatment. Inhibiting p73 by using siRNA reduced UVB-induced apoptosis, suggesting that downregulation of p73 was responsible for the cytoprotective effect of silibinin. In HFFs, the upregulated YAP-p73 pathway by UVB irradiation was also suppressed by silibinin. Collectively, YAP-p73 pathway is a major cause of the death of UVB-exposed epidermal HaCaT cells and dermal HFFs. Silibinin directly inhibits YAP-p73 pathway, exerting the protective action on UVB-irradiated skin cells.
Collapse
Affiliation(s)
- Wei-wei Liu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Fang Wang
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Can Li
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Xiao-yu Song
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Wuxiyar Otkur
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.423905.90000 0004 1793 300XCAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yu-ying Zhu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Toshihiko Hayashi
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.411110.40000 0004 1793 1012Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015 Japan ,Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, China.
| |
Collapse
|
2
|
Bhari N, Schwaertz RA, Apalla Z, Salerni G, Akay BN, Patil A, Grabbe S, Goldust M. Effect of estrogen in malignant melanoma. J Cosmet Dermatol 2022; 21:1905-1912. [PMID: 34416066 DOI: 10.1111/jocd.14391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Melanoma is associated with poor prognosis in its advanced stages. Potential influence of estrogen and its metabolites on melanoma growth has been suggested. AIMS The objective of this review was to provide an overview on the evidence related to estrogen in malignant melanoma. MATERIALS AND METHODS Literature search using PubMed, Google Scholar and relevant cross-references of the retrieved articles was performed to review relevant published articles related to estrogen and its effects in malignant melanoma. RESULTS Effect of estrogen signaling on a tissue largely depends on the relative expression of estrogen receptors (ER) α and β. Gender differences in melanoma may be explained by the difference in expression of these receptors. ERβ is the principal ER in melanoma. DISCUSSION Although there is uncertainty about role of estrogen in pathogenensis and progression of melanoma, evidence suggests that its growth and metastasis are influenced by estrogen stimulation. Role ER on the proliferation of melanoma cells is well described. CONCLUSION There is a need of safe and effective therapy for melanoma, especially for advanced cases. After the establishment of specific role of estrogen and its receptor, analysis of specific genetic mutation can be performed for proper utilization of targeted therapies.
Collapse
Affiliation(s)
- Neetu Bhari
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Robert A Schwaertz
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zoe Apalla
- Second Dermatology Department, Aristotle University of Thessaloniki, Greece
| | - Gabriel Salerni
- Department of Dermatology, Hospital Provincial del Centenario de Rosario-Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
3
|
Akao Y, Terazawa R, Sugito N, Heishima K, Morikawa K, Ito Y, Narui R, Hamaguchi R, Nobukawa T. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 2022; 12:6282. [PMID: 35428370 PMCID: PMC9012736 DOI: 10.1038/s41598-022-09655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
The ethanol extract from the wood of Taxus Yunnanensis (TY) induced apoptosis in all cancer cell lines tested, which was mainly due to activation of an extrinsic pathway in human colon cancer DLD-1 cells. The extrinsic pathway was activated by the upregulation of the expression levels of Fas and TRAIL/DR5, which led to the activation of caspase-8. Of note, the machinery of this increase in expression was promoted by the upregulation of MIR32a expression, which silenced MIR34a-targeting E2F3 transcription factor. Furthermore, ectopic expression of MIR32a or siR-E2F3 silencing E2F3 increased Fas and TRAIL/DR5 expression. Thus, the extract activated the extrinsic pathway through the MIR34a/E2F3 axis, resulting in the autocrine and paracrine release of TRAIL, and upregulated expression of death receptors Fas and DR5 in the treated DLD-1 cells, which were functionally validated by Fas immunocytochemistry, and using anti-Fas and anti-TRAIL antibodies, respectively. In vivo, TY showed significant anti-tumor effects on xenografted and syngeneic model mice. The extract may also aid in chemoprevention by selectively making marked tumor cells susceptible to the tumor immunosurveillance system.
Collapse
Affiliation(s)
- Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan.
| | - Riyako Terazawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kohei Morikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryoko Narui
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | - Reo Hamaguchi
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | | |
Collapse
|
4
|
Sekar P, Ravitchandirane R, Khanam S, Muniraj N, Cassinadane AV. Novel molecules as the emerging trends in cancer treatment: an update. Med Oncol 2022; 39:20. [PMID: 34982273 DOI: 10.1007/s12032-021-01615-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
As per World Health Organization cancer remains as a leading killer disease causing nearly 10 million deaths in 2020. Since the burden of cancer increases worldwide, warranting an urgent search for anti-cancer compounds from natural sources. Secondary metabolites from plants, marine organisms exhibit a novel chemical and structural diversity holding a great promise as therapeutics in cancer treatment. These natural metabolites target only the cancer cells and the normal healthy cells are left unharmed. In the emerging trends of cancer treatment, the natural bioactive compounds have long become a part of cancer chemotherapy. In this review, we have tried to compile about eight bioactive compounds from plant origin viz. combretastatin, ginsenoside, lycopene, quercetin, resveratrol, silymarin, sulforaphane and withaferin A, four marine-derived compounds viz. bryostatins, dolastatins, eribulin, plitidepsin and three microorganisms viz. Clostridium, Mycobacterium bovis and Streptococcus pyogenes with their well-established anticancer potential, mechanism of action and clinical establishments are presented.
Collapse
Affiliation(s)
- Priyanka Sekar
- Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, 605102, India
| | | | - Sofia Khanam
- Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Howrah, WB, 711316, India
| | - Nethaji Muniraj
- Centre for Cancer Immunology Research, Children's National Hospital, Children's National Research Institute, 111 Michigan Ave NW, Washington, D.C, 20010, USA.
| | | |
Collapse
|
5
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Azadpour M, Farajollahi MM, Varzi AM, Hashemzadeh P, Mahmoudvand H, Barati M. Extraction, Chemical Composition, Antioxidant Property, and In-vitro Anticancer Activity of Silymarin from Silybum marianum on Kb and A549 Cell Lines. Curr Drug Discov Technol 2021; 18:511-517. [PMID: 32860361 DOI: 10.2174/1570163817666200827111127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study aimed to evaluate the antioxidant property of Silymarin (SM) extracted from the seed of Silybum marianum and its anticancer activity on KB and A549 cell lines following 24, 48, and 72 h of treatment. METHODS Ten grams of powdered S. marianum seeds were defatted using n-hexane for 6 hours and then extracted by methanol. The Silymarin extracted of extraction components. The extracted components of Silymarin were measured by spectrophotometric assay and HPLC analysis. 2, 2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phenol content, total flavonoid content, and total antioxidant capacity were measured to detect the antioxidant properties of SM. The anticancer activity of the SM on cell lines evaluated by MTT. RESULTS In HPLC analysis, more than 50% of the peaks were related to silybin A and B. SM was reduced DPPH (the stable free radical) with a 50% inhibitory concentration (IC50) of 6.56 μg/ ml in comparison with butylated hydroxyl toluene (BHT), which indicated an IC50 of ~3.9 μg/ ml. The cytotoxicity effect of SM on the cell lines was studied by MTT assay. The cytotoxicity effect of the extracted Silymarin on KB and A549 cell lines was observed up to 80 and 70% at 156 and 78 μg/ml, respectively. The IC50 value of the extracted SM on KB and A549 cell lines after 24 hours of treatment was seen at 555 and 511 μg/ml, respectively. CONCLUSION Due to the good antioxidant and anticancer properties of the isolated Silymarin, its use as an anticancer drug is suggested.
Collapse
Affiliation(s)
- Mojgan Azadpour
- Research Center of Pediatric Infectious Diseases, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Morad Farajollahi
- Faculty of Science, Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Varzi
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Hashemzadeh
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra Barati
- Research Center of Pediatric Infectious Diseases, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity. Molecules 2020; 25:molecules25092009. [PMID: 32344919 PMCID: PMC7248929 DOI: 10.3390/molecules25092009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023] Open
Abstract
Silymarin extracted from milk thistle consisting of flavonolignan silybin has shown chemopreventive and chemosensitizing activity against various cancers. The present review summarizes the current knowledge on the potential targets of silymarin against various cancers. Silymarin may play on the system of xenobiotics, metabolizing enzymes (phase I and phase II) to protect normal cells against various toxic molecules or to protect against deleterious effects of chemotherapeutic agents on normal cells. Furthermore, silymarin and its main bioactive compounds inhibit organic anion transporters (OAT) and ATP-binding cassettes (ABC) transporters, thus contributing to counteracting potential chemoresistance. Silymarin and its derivatives play a double role, namely, limiting the progression of cancer cells through different phases of the cycle-thus forcing them to evolve towards a process of cell death-and accumulating cancer cells in a phase of the cell cycle-thus making it possible to target a greater number of tumor cells with a specific anticancer agent. Silymarin exerts a chemopreventive effect by inducing intrinsic and extrinsic pathways and reactivating cell death pathways by modulation of the ratio of proapoptotic/antiapoptotic proteins and synergizing with agonists of death domains receptors. In summary, we highlight how silymarin may act as a chemopreventive agent and a chemosensitizer through multiple pathways.
Collapse
|
8
|
Heenatigala Palliyage G, Singh S, Ashby CR, Tiwari AK, Chauhan H. Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma. AAPS PharmSciTech 2019; 20:250. [PMID: 31297635 DOI: 10.1208/s12249-019-1457-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Melanoma is regarded as the fifth and sixth most common cancer in men and women, respectively, and it is estimated that one person dies from melanoma every hour in the USA. Unfortunately, the treatment of melanoma is difficult because of its aggressive metastasis and resistance to treatment. The treatment of melanoma continues to be a challenging issue due to the limitations of available treatments such as a low response rate, severe adverse reactions, and significant toxicity. Natural polyphenols have attracted considerable attention from the scientific community due to their chemopreventive and chemotherapeutic efficacy. It has been suggested that poorly soluble polyphenols such as curcumin, resveratrol, quercetin, coumarin, and epigallocatechin-3-gallate may have significant benefits in the treatment of melanoma due to their antioxidant, anti-inflammatory, antiproliferative, and chemoprotective efficacies. The major obstacles for the use of polyphenolic compounds are low stability and poor bioavailability. Numerous nanoformulations, including solid lipid nanoparticles, polymeric nanoparticles, micelles, and liposomes, have been formulated to enhance the bioavailability and stability, as well as the therapeutic efficacy of polyphenols. This review will provide an overview of poorly soluble polyphenols that have been reported to have antimetastatic efficacy in melanomas.
Collapse
|
9
|
El-Far M, Salah N, Essam A, Abd El-Azim AO, El-Sherbiny IM. Silymarin nanoformulation as potential anticancer agent in experimental Ehrlich ascites carcinoma-bearing animals. Nanomedicine (Lond) 2018; 13:1865-1858. [DOI: 10.2217/nnm-2017-0394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: This study aimed to evaluate, for the first time the potential use of a safe biocompatible nanoformulation of silymarin (SM) as antitumor agent and to provide its mechanism of action compared with native SM. Materials & methods: SM was loaded into pluronic nanomicelles and Ehrlich ascites carcinoma-tumor-bearing mice were used as experimental model. Biochemical parameters including SOD, CAT and GSH, lipid peroxidation biomarkers (MDA), histopathological, ultrastructural and immunohistochemical studies were applied on the Ehrlich ascites carcinoma cells. Furthermore, the cell cycle as well as caspase-3 were examined. Results & conclusion: Nanoformulated SM (SMnp) destroyed tumors via increasing SOD, CAT and GSH concomitant with decreasing MDA. Moreover, SMnp-induced apoptosis through decreasing Ki-67 and Bcl2 expression, along with the activation of caspase-3, leads to inhibition of proliferation and the arrest of ceel cycle progression at the G1/S phase. Electron microscopy studies presented the superiority of SMnp over native SM in causing mitochondrial and nuclear degeneration in cancer cells.
Collapse
Affiliation(s)
- Mohamed El-Far
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Neven Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa Essam
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amira O Abd El-Azim
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ibrahim M El-Sherbiny
- Center of Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt
| |
Collapse
|
10
|
Bijak M, Synowiec E, Sitarek P, Sliwiński T, Saluk-Bijak J. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients 2017; 9:E1356. [PMID: 29240674 PMCID: PMC5748806 DOI: 10.3390/nu9121356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonolignans are the main components of silymarin, which represents 1.5-3% of the dry fruit weight of Milk thistle (Silybum marianum L. Gaernt.). In ancient Greece and Romania, physicians and herbalists used the Silybum marianum to treat a range of liver diseases. Besides their hepatoprotective action, silymarin flavonolignans have many other healthy properties, such as anti-platelet and anti-inflammatory actions. The aim of this study was to evaluate the toxic effect of flavonolignans on blood platelets, peripheral blood mononuclear cells (PBMCs) and human lung cancer cell line-A549-using different molecular techniques. We established that three major flavonolignans: silybin, silychristin and silydianin, in concentrations of up to 100 µM, have neither a cytotoxic nor genotoxic effect on blood platelets, PMBCs and A549. We also saw that silybin and silychristin have a protective effect on cellular mitochondria, observed as a reduction of spontaneous mitochondrial DNA (mtDNA) damage in A549, measured as mtDNA copies, and mtDNA lesions in ND1 and ND5 genes. Additionally, we observed that flavonolignans increase the blood platelets' mitochondrial membrane potential and reduce the generation of reactive oxygen species in blood platelets. Our current findings show for the first time that the three major flavonolignans, silybin, silychristin and silydianin, do not have any cytotoxicity and genotoxicity in various cellular models, and that they actually protect cellular mitochondria. This proves that the antiplatelet and anti-inflammatory effect of these compounds is part of our molecular health mechanisms.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Tomasz Sliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
11
|
Lal M, Gupta D. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells. Discoveries (Craiova) 2016; 4:e56. [PMID: 32309577 PMCID: PMC6941569 DOI: 10.15190/d.2016.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
Recent reports demonstrated the role of silymarin as a cytoprotective agent for normal cells against ionizing or non-ionizing (UV) radiation, and in inhibiting the chemically initiated or promoted carcinogenesis in several malignancies, such as skin or prostate cancers. Silymarin is a plant flavonoid obtained from milk thistle; the main active principles in milk thistle are silybin (silibinin), sylichrisitin and silydianin, commonly referred as silymarin. In the present study, we aimed to investigate the radiation modulatory effects of silymarin on cancer cells. For this, we used the HCT-15 and RKO colon cancer cell lines as a model. Pre-irradiation treatment of cells with silymarin (20 mg/ml) followed by radiation exposure inhibits colon cancer cell proliferation and enhances cell death in a time-dependent manner. We have also examined the changes in p53 phosphorylation at Ser15, phosphorylation of p38 and their association with DNA damage. Silymarin was found to reduce proliferation of the human colon carcinoma cells in a concentration and time-dependent manner. Moreover, percentage of cell death was also increased in combined treatment (20µg/ml of silymarin + radiation). Our studies indicate that the combination increases the arrest of cells in G2/M phase of cell cycle, DNA damage-induced decrease in mitochondrial membrane potential (MMP) and a decrease of the reactive oxygen species (ROS) levels, which are associated with an increase in cell death. Altogether, these results suggest that silymarin sensitizes colon cancer cells to radiation, strategy with potential for colon cancer treatment. Noteworthy, since silymarin was previously shown to confer protection against radiation in at least some types of normal tissues, additional studies are needed to further investigate the potential of silymarin in colon cancer therapy when combined with radiation, its potential protective effects on normal tissues and its mechanisms of action.
Collapse
Affiliation(s)
- Mitu Lal
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
12
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|
13
|
Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 2015; 359:20-35. [PMID: 25597784 DOI: 10.1016/j.canlet.2015.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway - the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib - have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies.
Collapse
Affiliation(s)
- Leah Ray Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Hajighasemlou S, Farajollahi M, Alebouyeh M, Rastegar H, Manzari MT, Mirmoghtadaei M, Moayedi B, Ahmadzadeh M, Kazemi M, Parvizpour F, Gharibzadeh S. Study of the Effect of Silymarin on Viability of Breast Cancer Cell Lines. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abcr.2014.33015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Raza SS, Khan MM, Ashafaq M, Ahmad A, Khuwaja G, Khan A, Siddiqui MS, Safhi MM, Islam F. Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: a behavioral, biochemical and immunohistological study in Wistar rats. J Neurol Sci 2011; 309:45-54. [PMID: 21840019 DOI: 10.1016/j.jns.2011.07.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/28/2023]
Abstract
Cerebral stroke is the third largest cause of death and the severe leading cause of disability, thus have astronomical financial and social burden worldwide. Accumulated evidence suggests that ROS can be scavenged through utilizing natural antioxidant compounds present in foods and medicinal plants. In this study, we examined whether silymarin, an antioxidant, present in the milk of thistle can prevent or slowdown neuronal injury in focal cerebral ischemia. Male Wistar rats were pre-treated with silymarin (200mg/kg body weight, dissolved in 0.3 % sodium carboxymethyl cellulose, once orally) for 15 days. On day 16, they underwent a transient 2h suture-occlusion of the middle cerebral artery followed by 22 h of reperfusion. Rats were tested for neurobehavioral activity after 22 h reperfusion. Silymarin was found to be successful in upregulating the antioxidant status and lowering the apoptotic responses, and functional recovery returned close to the baseline. This study revealed that silymarin, a naturally occurring flavone from the milk thistle (Silybum marianum), may be helpful in slowing down the progression of neurodegeneration in focal cerebral ischemia. These results suggest that the neuroprotective potential of silymarin is mediated through its anti-oxidative and anti-apoptotic properties.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Syed DN, Mukhtar H. Botanicals for the prevention and treatment of cutaneous melanoma. Pigment Cell Melanoma Res 2011; 24:688-702. [PMID: 21426532 DOI: 10.1111/j.1755-148x.2011.00851.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma, a cancer of melanocytes, when detected at later stages is arguably one of the most lethal cancers and the cause of more years of lost life than any other cancer among young adults. There is no standard therapy for advanced-stage melanoma and the median survival time for patients with metastatic melanoma is <1 yr. An urgent need for novel strategies against melanoma has directed research towards the development of new chemotherapeutic and biologic agents that can target the tumor by several different mechanisms. Recently, several dietary agents are being investigated for their role in the prevention and treatment of various forms of cancer and may represent the future modality of the treatment. Here, we have reviewed emerging data on botanicals that are showing promise for their potential inhibitory effect against cutaneous melanoma.
Collapse
Affiliation(s)
- Deeba N Syed
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
17
|
Wang Y, Sun L, Xia C, Ye L, Wang B. P38MAPK regulates caspase-3 by binding to caspase-3 in nucleus of human hepatoma Bel-7402 cells during anti-Fas antibody- and actinomycin D-induced apoptosis. Biomed Pharmacother 2008; 63:343-50. [PMID: 18640003 DOI: 10.1016/j.biopha.2008.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022] Open
Abstract
Anti-Fas antibody- and actinomycin D (FA/AD) has been shown to have anti-tumor activity in some tumor cells. However, many of the molecular mechanism of FA/AD-induced apoptosis of human hepatoma Bel-7402 cells have not been fully clarified. In the present study, therefore, the effect of FA/AD in presence or absence of p38MAPK inhibitor SB203580 on the proliferation, apoptosis, p38MAPK, caspase-3, location of p38MAPK and caspase-3, and interaction between p38MAPK and caspase-3 in Bel-7402 cell was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), annexin V-FITC/propidium iodide (PI) double staining, electron microscopy, immunoblot, immunofluorescence and immunoprecipitation/immunoblot assay, respectively. We found that FA/AD significantly resulted in the inhibition of proliferation, induction of apoptosis, activation and up-regulation of p38MAPK, activation and up-regulation of caspase-3, translocation of p38MAPK and caspase-3 from cytosol to nucleus, and formation of p38MAPK/caspase-3 complex in Bel-7402 cells. In contrast, SB203580, a p38MAPK-specific inhibitor, apparently blocked induction of apoptosis, activation and up-regulation of p38MAPK, activation and up-regulation of caspase-3, and translocation of p38MAPK and caspase-3 from cytosol to nucleus in FA/AD-treated Bel-7402 cells. Taken together, we conclude that p38MAPK regulates caspase-3 by binding to caspase-3 in nucleus of Bel-7402 cells during FA/AD-induced apoptosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | |
Collapse
|
18
|
Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett 2008; 269:352-62. [PMID: 18472213 DOI: 10.1016/j.canlet.2008.03.053] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/08/2008] [Accepted: 03/28/2008] [Indexed: 02/07/2023]
Abstract
Silymarin, a flavonolignan from milk thistle (Silybum marianum) plant, is used for the protection against various liver conditions in both clinical settings and experimental models. In this review, we summarize the recent investigations and mechanistic studies regarding possible molecular targets of silymarin for cancer prevention. Number of studies has established the cancer chemopreventive role of silymarin in both in vivo and in vitro models. Silymarin modulates imbalance between cell survival and apoptosis through interference with the expressions of cell cycle regulators and proteins involved in apoptosis. In addition, silymarin also showed anti-inflammatory as well as anti-metastatic activity. Further, the protective effects of silymarin and its major active constituent, silibinin, studied in various tissues, suggest a clinical application in cancer patients as an adjunct to established therapies, to prevent or reduce chemotherapy as well as radiotherapy-induced toxicity. This review focuses on the chemistry and analogues of silymarin, multiple possible molecular mechanisms, in vitro as well as in vivo anti-cancer activities, and studies on human clinical trials.
Collapse
Affiliation(s)
- Kumaraguruparan Ramasamy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, 4200 East Ninth Street, Box C238, Denver, CO 80262, USA
| | | |
Collapse
|