1
|
Polo-Cuadrado E, López-Cuellar L, Acosta-Quiroga K, Rojas-Peña C, Brito I, Cisterna J, Trilleras J, Alderete JB, Duarte Y, Gutiérrez M. Comprehensive analysis of crystal structure, spectroscopic properties, quantum chemical insights, and molecular docking studies of two pyrazolopyridine compounds: potential anticancer agents. RSC Adv 2023; 13:30118-30128. [PMID: 37849708 PMCID: PMC10578360 DOI: 10.1039/d3ra04874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
In this study, two pyrazolo[3,4-b]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, 1H/13C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups P21/n and P1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries. The results were in excellent agreement with the experimental data (spectroscopic and XRD). This investigation encompasses molecular modeling studies including Hirshfeld surface analysis, energy framework calculations, and frontier molecular orbital analysis. Intermolecular interactions within the crystal structures of the compounds were explored through Hirshfeld surface analysis, which revealed the notable presence of hydrogen bonding and hydrophobic interactions. This insight provides valuable information on the structural stability and potential solubility characteristics of these compounds. The research was extended to docking analysis with eight distinct kinases (BRAF, HER2, CSF1R, MEK2, PDGFRA, JAK, AKT1, and AKT2). The results of this analysis demonstrate that both 4a and 4b interact effectively with the kinase-binding sites through a combination of hydrophobic interactions and hydrogen bonding. Compound 4a had the best affinity for proteins; this is related to the fact that the compound is not rigid and has a small size, allowing it to sit well at any binding site. This study contributes to the advancement of kinase inhibitor research and offers potential avenues for the development of new therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Lorena López-Cuellar
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Karen Acosta-Quiroga
- Doctorado en Química, Departamento de Química Inorgánica y Analítica, Universidad de Chile Santiago Chile
| | - Cristian Rojas-Peña
- Doctorado en Química, Departamento de Química Inorgánica y Analítica, Universidad de Chile Santiago Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avenida. Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Sede Casa Central, Av. Angamos 0610 Antofagasta Chile
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Joel B Alderete
- Instituto de Química de Recursos Naturales (IQRN), Universidad de Talca Avenida Lircay S/N, Casilla 747 Talca Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad, Andrés Bello Av. Republica 330 Santiago 8370146 Chile
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso 2381850 Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
2
|
Mekky AEM, Sanad SMH. [3+2] Cycloaddition Synthesis of New Piperazine-Linked Bis(chromene) Hybrids Possessing Pyrazole Units as Potential Acetylcholinesterase Inhibitors. Chem Biodivers 2023; 20:e202200518. [PMID: 36988046 DOI: 10.1002/cbdv.202200518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Two series of piperazine-linked bis(chromene) hybrids that are attached to pyrazole units were synthesized in the current study. Both series are attached to an acyl unit at pyrazole-C3, with one series attached to an acetyl unit and the other to an ethoxycarbonyl unit. A [3+2] cycloaddition protocol was conducted to produce the target hybrids with good yields by reacting the appropriate hydrazonoyl chlorides with chromene-based bis(enaminone) in dioxane containing triethylamine at reflux for 4 h. New hybrids were tested for acetylcholinesterase inhibitory activity at concentrations of 15 and 25 μM, as well as their ability to quench 2,2-diphenylpicrylhydrazyl (DPPH) free radicals at a concentration of 25 μg/mL. In general, the inhibitory activity is related to the electronic properties of the para-substituent that is attached to the arene unit at pyrazole-N1. Furthermore, the acyl unit attached to pyrazole-C3 has a significant effect on the new hybrids' inhibitory activity. At the previous concentrations, the (3-acetylpyrazole)-linked hybrid attached to p-NO2 units demonstrated the best acetylcholinesterase inhibitory activity, with inhibition percentages of 79.7 and 90.2. Furthermore, the previous hybrid demonstrated the most effective DPPH inhibitory activity, with an inhibition percentage of 87.5.
Collapse
Affiliation(s)
- Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
3
|
Mekky AEM, Sanad SMH. Microwave-assisted synthesis of nicotinonitrile and/or arene-linked bis(chromene-thiazoles) as new VRE and MRSA inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2144378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Mohamed Ahmed MS, Mekky AE, Sanad SM. Regioselective [3 + 2] cycloaddition synthesis and theoretical calculations of new chromene-pyrazole hybrids: A DFT-based Parr Function, Fukui Function, local reactivity indexes, and MEP analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Sanad SMH, Mekky AEM. [3 + 2] Cycloaddition synthesis of new (nicotinonitrile-chromene) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Ahmed AAM, Mekky AEM, Sanad SMH. New bis(pyrazolo[3,4-b]pyridines) and bis(thieno[2,3-b]pyridines) as potential acetylcholinesterase inhibitors: synthesis, in vitro and SwissADME prediction study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Metwally NH, Koraa TH, Sanad SMH. Green one-pot synthesis and in vitro antibacterial screening of pyrano[2,3- c]pyrazoles, 4 H-chromenes and pyrazolo[1,5- a]pyrimidines using biocatalyzed pepsin. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2074301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo-fused macrocyclic and heteromacrocyclic bis(Schiff bases). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
10
|
Ahmed AAM, Mekky AEM, Sanad SMH. New piperazine-based bis(thieno[2,3- b]pyridine) and bis(pyrazolo[3,4- b]pyridine) hybrids linked to benzofuran units: Synthesis and in vitro screening of potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Common First Year Deanship, Jouf University, Sakaka, KSA
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
11
|
Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Sanad SMH, Mekky AEM. 3-Aminopyrazolo[3,4-b]pyridine: Effective Precursor for Barium Hydroxide-Mediated Three Components Synthesis of New Mono- and Bis(pyrimidines) with Potential Cytotoxic Activity. Chem Biodivers 2021; 19:e202100500. [PMID: 34784450 DOI: 10.1002/cbdv.202100500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023]
Abstract
In this study, an efficient one-pot procedure for preparing a new series of pyrazolo[3,4-b]pyridine-fused pyrimidines was described. The target hybrids were developed through a three-component reaction of 3-amino-1H-pyrazolo[3,4-b]pyridine, benzaldehydes, and acetophenones (molar ratio 1 : 1 : 1). The best conditions for the previous reaction were 2.5 equivalents of barium hydroxide in DMF at 150 °C for 6 h. New bis(pyrimidines) were synthesized in high yields using a similar one-pot reaction protocol with some modifications. Thus, two equivalents of each of the appropriate acetophenones and 3-aminopyrazolopyridine were reacted with one equivalent of the appropriate bis(aldehydes). The reaction was carried out at 150 °C for 8 h using 4.5 equivalents of barium hydroxide in DMF. Repeating the previous reaction with the appropriate bis(acetyl) derivatives and benzaldehydes resulted in good yields of the target bis(pyrimidines). The in vitro cytotoxic activity of new pyrimidines against the MCF-7, HEPG2, and Caco2 cell lines was evaluated using the reference doxorubicin (IC50 values of 4.34-6.97 μM). Hybrid 6h had the best activity against Caco2 and MCF-7 cell lines, IC50 values of 12.62 and 14.50 μM, respectively. The IC50 values for hybrids 6c, 6e, and 6f against MCF-7 and Caco2 cell lines were 23.99-41.69 and 33.14-43.33 μM, respectively. Furthermore, hybrid 6e displayed IC50 value of 20.06 μM HEPG2 cell lines, while the hybrids 6c, 6f and 6h exhibited IC50 values ranging between 26.29-50.51 μM. Furthermore, hybrid 6e had an IC50 value of 20.06 μM for the HEPG2 cell lines, whereas hybrids 6c, 6f, and 6h had IC50 values ranging from 26.29 to 50.51 μM.
Collapse
Affiliation(s)
- Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Sanad SM, Mekky AE. Synthesis and antibacterial evaluation of new pyrido[3',2':4,5]thieno[3,2-d ]pyrimidin-4(3H)-one hybrids linked to different heteroarene units. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo‐fused macrocyclic and thiamacrocyclic dilactams and related pyrazolo‐fused macrocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahmed A. M. Ahmed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
- Common First Year Deanship Jouf University Sakaka Saudi Arabia
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | |
Collapse
|
15
|
Mekky AEM, Sanad SMH, El-Idreesy TT. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1970774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ahmed E. M. Mekky
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
| | - Sherif M. H. Sanad
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
| | - Tamer T. El-Idreesy
- Faculty of Science , Chemistry Department, Cairo University, Giza, Egypt
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
16
|
Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg Chem 2020; 102:104094. [PMID: 32711085 DOI: 10.1016/j.bioorg.2020.104094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Novel 1,4-bis[(2-(3-(dimethylamino)-1-oxoprop-2-en-1-yl)benzofuran-5-yl)methyl]piperazine was prepared and used as a key synthon for the this study. Therefore, 1,3-dipolar cycloaddition of this synthon with the appropriate hydrazonyl chlorides afforded a new series of bis(1,3,4-trisubstituted pyrazoles), linked via piperazine moiety. Furthermore, it reacted with hydrazine hydrate and phenyl hydrazine individually to afford the corresponding 1,4-bis[(2-(1H-pyrazolyl)benzofuran-5-yl)methyl]piperazines. Different bacterial strains and cell lines were selected to study the in-vitro antibacterial and cytotoxic activities for the new derivatives. 1,4-Bis[((2-(3-acetyl-1-(4-nitrophenyl)-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine 5e showed the best antibacterial efficacies with MIC/MBC values of 1.2/1.2, 1.2/2.4 and 1.2/2.4 μM against each of E. coli, S. aureus and S. mutans strains, respectively. In addition, the inhibitory activity of some new bis(pyrazoles) as MRSA and VRE inhibitors were studied. Compound 5e gave the best inhibitory activity with MIC/MBC values of 18.1/36.2, 9.0/18.1 and 18.1/18.1 µM, respectively, against MRSA (ATCC:33591 and ATCC:43300) and VRE (ATCC:51575) bacterial strains, respectively. Compound 5e showed more effective biofilm inhibition activities than the reference Ciprofloxacin. It showed IC50 values of 3.0 ± 0.05, 3.2 ± 0.08 and 3.3 ± 0.07 μM against S. aureus, S. mutans and E. coli strains, respectively. Furthermore, experimental study showed excellent inhibitory activities of 1,4-bis[((2-(3-substituted-1-aryl-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine derivatives, attached to p-NO2 or p-Cl groups, against MurB enzyme. Compound 5e gave the best MurB inhibitory activity with IC50 value of 3.1 μM. The in-silico study was performed to predict the capability of new derivatives as potential inhibitors of MurB enzyme.
Collapse
|
17
|
Sanad SMH, Mekky AEM. Synthesis, cytotoxicity and in vitro antibacterial screening of novel hydrazones bearing thienopyridine moiety as potent COX-2 inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01987-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Mekky AEM, Sanad SMH, Said AY, Elneairy MAA. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3-b]pyridines as potential pim-1 inhibitors. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1778033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ahmed Y. Said
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
19
|
Sanad SMH, Mekky AEM. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1743318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|