1
|
Benoune RA, Dems MA, Boulcina R, Bensouici C, Robert A, Harakat D, Debache A. Synthesis, biological evaluation, theoretical calculations, QSAR and molecular docking studies of novel arylaminonaphthols as potent antioxidants and BChE inhibitors. Bioorg Chem 2024; 150:107598. [PMID: 38959645 DOI: 10.1016/j.bioorg.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
A completely green protocol was developed for the synthesis of a series of arylaminonaphthol derivatives in the presence of N-ethylethanolamine (NEEA) as a catalyst under ultrasonic irradiation and solventless conditions. The major assets of this methodology were the use of non-toxic organic medium, available catalyst, mild reaction condition, and good to excellent yield of desired products. All of the synthesized products were screened for their in vitro antioxidant activity using DPPH, ABTS, and Ferric-phenanthroline assays and it was found that most of them are potent antioxidant agents. Also, their butyrylcholinesterase inhibitory activity has been investigated in vitro. All tested compounds exhibited potential inhibitory activity toward BuChE when compared to standard reference drug galantamine, however, compounds 4r, 4u, 4 g and 4x gave higher butyrylcholinesterase inhibitory with IC50 values of 14.78 ± 0.65 µM, 16.18 ± 0.50 µM, 20.00 ± 0.50 µM, and 20.28 ± 0.08 µM respectively. On the other hand, we employed density functional theory (DFT), calculations to analyze molecular geometry and global reactivity descriptors, and MESP analysis to predict electrophilic and nucleophilic attacks. A quantitative structure-activity relationship (QSAR) investigation was conducted on the antioxidant and butyrylcholinesterase properties of 25 arylaminonaphthol derivatives, resulting in robust and satisfactory models. To evaluate their anti-Alzheimer's activity, compounds 4 g, 4q, 4r, 4u, and 4x underwent docking simulations at the active site of the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing why these compounds displayed superior activity, consistent with the biological findings.
Collapse
Affiliation(s)
- Racha Amira Benoune
- Laboratory of Synthesis of Molecules with Biological Interest, Faculty of Exact Sciences, Mentouri - Constantine 1 University, 25000 Constantine, Algeria
| | | | - Raouf Boulcina
- Laboratory of Synthesis of Molecules with Biological Interest, Faculty of Exact Sciences, Mentouri - Constantine 1 University, 25000 Constantine, Algeria; Department of Engineering Process, Faculty of Technology, Mostefa Benboulaïd-Batna 2 University, 5000 Batna, Algeria.
| | | | - Anthony Robert
- Reims Champagne-Ardenne University, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
| | - Dominique Harakat
- Reims Champagne-Ardenne University, CNRS UMR 7312, ICMR, URCATech, 51100 Reims, France
| | - Abdelmadjid Debache
- Laboratory of Synthesis of Molecules with Biological Interest, Faculty of Exact Sciences, Mentouri - Constantine 1 University, 25000 Constantine, Algeria
| |
Collapse
|
2
|
Hosseini Nasab N, Han Y, Hassan Shah F, Vanjare BD, Kim SJ. Synthesis, biological evaluation, migratory inhibition and docking study of Indenopyrazolones as potential anticancer agents. Chem Biodivers 2022; 19:e202200399. [PMID: 35977918 DOI: 10.1002/cbdv.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Some bioactive derivatives of indeno[1,2- c ]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell line by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e , 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC 50 = 418.9±1.54 µM) with IC 50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a , 4b and 4h . This was confirmed by molecular docking studies, as 4e , 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b , 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Yohan Han
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Fahad Hassan Shah
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Balasaheb D Vanjare
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Song Ja Kim
- Kongju National University, Biological Science, 56 GongjuDaehak-Ro, 32588, Gongju, KOREA, REPUBLIC OF
| |
Collapse
|
3
|
Jadhav CK, Nipate AS, Chate AV, Gill CH. β‐Cyclodextrin: An Efficient Supramolecular Catalyst for the Synthesis of Pyranoquinolines Derivatives under Ultrasonic Irradiation in Water. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Amol S. Nipate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Charansingh. H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| |
Collapse
|
4
|
Esmaeili AA, Feizpour F, Ghereghlou M, Habibi A. Green and Efficient Synthesis of Novel Polysubstituted 2-Pyrrolidinones under Catalyst and Solvent-Free Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2072912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Feizpour
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Mahnaz Ghereghlou
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
5
|
Devi M, Singh R, Sindhu J, Kumar A, Lal S, Kumar R, Hussain K, Sachdeva M, Singh D, Kumar P. Sonochemical Protocols for Heterocyclic Synthesis: A Representative Review. Top Curr Chem (Cham) 2022; 380:14. [PMID: 35149908 DOI: 10.1007/s41061-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS & H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Guru Jambheshwar University of Science and Technology, Department of Pharmaceutical Sciences, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, 122107, India
| | - Megha Sachdeva
- Department of Chemistry, Center of Advanced Study in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
6
|
Mahmoudi Z, Ghasemzadeh MA, Kabiri-Fard H, Taghvaei Ganjali S. Multicomponent Synthesis of Pyrimidoquinolinetriones and Pyridodipyrimidines in the Presence of Triethylenediamine-Based Ionic Liquid/MIL-101(Cr) Metal-Organic Framework Composite. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2005638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zohreh Mahmoudi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| | | | - Hasan Kabiri-Fard
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Saeed Taghvaei Ganjali
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| |
Collapse
|