1
|
Jameel E, Madhav H, Agrawal P, Raza MK, Ahmedi S, Rahman A, Shahid N, Shaheen K, Gajra CH, Khan A, Malik MZ, Imam MA, Kalamuddin M, Kumar J, Gupta D, Nayeem SM, Manzoor N, Mohammad A, Malhotra P, Hoda N. Identification of new oxospiro chromane quinoline-carboxylate antimalarials that arrest parasite growth at ring stage. J Biomol Struct Dyn 2023; 41:15485-15506. [PMID: 36970842 DOI: 10.1080/07391102.2023.2188959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Malaria still threatens half the globe population despite successful Artemisinin-based combination therapy. One of the reasons for our inability to eradicate malaria is the emergence of resistance to current antimalarials. Thus, there is a need to develop new antimalarials targeting Plasmodium proteins. The present study reported the design and synthesis of 4, 6 and 7-substituted quinoline-3-carboxylates 9(a-o) and carboxylic acids 10(a-b) for the inhibition of Plasmodium N-Myristoyltransferases (NMTs) using computational biology tools followed by chemical synthesis and functional analysis. The designed compounds exhibited a glide score of -9.241 to -6.960 kcal/mol for PvNMT and -7.538 kcal/mol for PfNMT model proteins. Development of the synthesized compounds was established via NMR, HRMS and single crystal X-ray diffraction study. The synthesized compounds were evaluated for their in vitro antimalarial efficacy against CQ-sensitive Pf3D7 and CQ-resistant PfINDO lines followed by cell toxicity evaluation. In silico results highlighted the compound ethyl 6-methyl-4-(naphthalen-2-yloxy)quinoline-3-carboxylate (9a) as a promising inhibitor with a glide score of -9.084 kcal/mol for PvNMT and -6.975 kcal/mol for PfNMT with IC50 values of 6.58 µM for Pf3D7 line. Furthermore, compounds 9n and 9o exhibited excellent anti-plasmodial activity (Pf3D7 IC50 = 3.96, 6.71 µM, and PfINDO IC50 = 6.38, 2.8 µM, respectively). The conformational stability of 9a with the active site of the target protein was analyzed through MD simulation and was found concordance with in vitro results. Thus, our study provides scaffolds for the development of potent antimalarials targeting both Plasmodium vivax and Plasmodium falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ehtesham Jameel
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Hari Madhav
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Prakhar Agrawal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Md Kausar Raza
- Department of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA, USA
| | - Saiema Ahmedi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdur Rahman
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Nida Shahid
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Kashfa Shaheen
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Chhaya Haresh Gajra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Zubbair Malik
- School of Computational Biology, Jawaharlal Nehru University, New Delhi, India
| | - Md Ali Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Kalamuddin
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Jitendra Kumar
- Department of Chemistry, Sardar Vallabhbhai Patel College, Bhabua, India
- V. K. S. U., Ara, Bihar, India
| | - Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nikhat Manzoor
- Department of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA, USA
| | - Asif Mohammad
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nasimul Hoda
- Department of Chemistry, Drug Design and Synthesis Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Yu L, Dai A, Zhang W, Liao A, Guo S, Wu J. Spiro Derivatives in the Discovery of New Pesticides: A Research Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10693-10707. [PMID: 35998302 DOI: 10.1021/acs.jafc.2c02301] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiro compounds are biologically active organic compounds with unique structures, found in a wide variety of natural products and drugs. They do not readily lead to drug resistance due to their unique mechanisms of action and have, therefore, attracted considerable attention regarding pesticide development. Analyzing structure-activity relationships (SARs) and summarizing the characteristics of spiro compounds with high activity are crucial steps in the design and development of new pesticides. This review mainly summarizes spiro compounds with insecticidal, bactericidal, fungicidal, herbicidal, antiviral, and plant growth regulating functions to provide insight for the creation of new spiro compound pesticides.
Collapse
Affiliation(s)
- Lijiao Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|