1
|
Gerasimova A, Nikolova K, Petkova N, Ivanov I, Dincheva I, Tumbarski Y, Yanakieva V, Todorova M, Gentscheva G, Gavrilova A, Yotkovska I, Nikolova S, Slavov P, Harbaliev N. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1731. [PMID: 38999571 PMCID: PMC11243431 DOI: 10.3390/plants13131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as well as to evaluate the antioxidant, antimicrobial and anti-inflammatory activities of its leaf and pulp extracts. The results showed that the pulp predominantly contained the essential amino acid histidine (7.81 mg g-1), while it was absent in the leaves, with the highest concentration being tryptophan (8.30 mg g-1). Of the fatty acids, palmitoleic acid predominated both in the pulp and in the leaves. A major sterol component was β-sitosterol. Fructose (7.50%) was the predominant sugar in the pulp, while for the leaves, it was glucose-1.51%. Seven elements were identified: sodium, potassium, iron, magnesium, manganese, copper and zinc. The highest concentrations of K and Mg were in the pulp (23,946 mg kg-1 and 1890 mg kg-1) and leaves (36,179 mg kg-1 and 5064 mg kg-1). According to the DPPH, FRAP and CUPRAC methods, the highest values for antioxidant activity were found in 70% ethanolic extracts of the leaves, while for the ABTS method, the highest value was found in 50% ethanolic extracts. In the pulp, for all four methods, the highest values were determined at 50% ethanolic extracts. Regarding the antibacterial activity, the 50% ethanolic leaf extracts were more effective against the Gram-positive bacteria. At the same time, the 70% ethanolic leaf extract was more effective against Gram-negative bacteria such as Salmonella enteritidis ATCC 13076. The leaf extracts exhibited higher anti-inflammatory activity than the extracts prepared from the pulp. The obtained results revealed that P. caerulea is a plant that can be successfully applied as an active ingredient in various nutritional supplements or cosmetic products.
Collapse
Affiliation(s)
- Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Ina Yotkovska
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| |
Collapse
|
2
|
de Jesus Silva J, Junghans TG, da Silva Ledo CA, de Lima Silva F, Souza EHD, Hongyu K, Souza FVD. Cryopreservation and germinative behavior of Passiflora spp. seeds. 3 Biotech 2022; 12:276. [PMID: 36110568 PMCID: PMC9468201 DOI: 10.1007/s13205-022-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Cryopreservation is an interesting strategy for the long-term conservation of the seeds of the majority of cultivated plants as well as many of the corresponding wild parents. The objective of this study was to evaluate the response of the seeds of different passion fruit species to cryopreservation, as well as to apply multivariate tools to better understand the germinative behavior after thawing, to support the application and repeatability of these methods with other Passiflora species. Seeds of P. coccinea, P. edulis, P. gibertii, P. maliformis, P. morifolia, P. setacea, P. suberosa and P. tenuifila were submitted to cryopreservation, and after thawing the following variables were analyzed: emergence percentage (%); mean emergence time (days); mean emergence speed (plantlets.day-1); uncertainty (bit); and synchrony (bit). We applied multivariate analysis of variance (MANOVA) and canonical discriminant analysis (CDA) to the data. The seeds of all the species withstood the freezing well, indicating that cryopreservation is a viable alternative for long-term conservation of Passiflora genetic material. The emergence percentage, average emergence speed and average emergence time were the variables that contributed the most to separation of the species in the first canonical discriminant function (Can1). The seeds of the species studied were found to be tolerant to desiccation because they remained viable even with low water content. The results showed that seeds could be cryopreserved successfully both with and without prior desiccation.
Collapse
Affiliation(s)
- Jailton de Jesus Silva
- Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa, s/n, Campus de Cruz das Almas, Cruz das Almas, BA 44380-000 Brazil
| | - Tatiana Góes Junghans
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Chapadinha, C.P. 007, Cruz das Almas, BA 44380-000 Brazil
| | | | - Fabiane de Lima Silva
- Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa, s/n, Campus de Cruz das Almas, Cruz das Almas, BA 44380-000 Brazil
| | - Everton Hilo de Souza
- Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa, s/n, Campus de Cruz das Almas, Cruz das Almas, BA 44380-000 Brazil
| | - Kuang Hongyu
- Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, Boa Esperança, Cuiabá, Mato Grosso 78060-900 Brazil
| | | |
Collapse
|
3
|
Balkrishna A, Sharma P, Joshi M, Srivastava J, Varshney A. Development and validation of a rapid high-performance thin-layer chromatographic method for quantification of gallic acid, cinnamic acid, piperine, eugenol, and glycyrrhizin in Divya-Swasari-Vati, an ayurvedic medicine for respiratory ailments. J Sep Sci 2021; 44:3146-3157. [PMID: 34101986 DOI: 10.1002/jssc.202100096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
Divya-Swasari-Vati is a calcium containing polyherbal ayurvedic medicine prescribed for the lung-related ailments observed in the current pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 infections. The formulation is a unique quintessential blend of nine herbs cited in Ayurvedic texts for chronic cough and lung infection. Analytical standardization of herbal medicines is the pressing need of the hour to ascertain the quality compliance. This persuaded us to develop a simple, rapid, and selective high-performance thin-layer chromatographic method for Divya-Swasari-Vati quality standardization. The developed method was validated for the quantification of marker components, gallic acid, cinnamic acid, piperine, eugenol and glycyrrhizin, against reference standards in five different batches of Divya-Swasari-Vati. The analytes were identified by visualization at 254 nm, and by matching their retention factor with authentic standards. The developed method was validated as per the guidelines recommended by the International Council for Harmonization for parameters like, linearity, limit of detection, limit of quantification, accuracy, and precision. Therefore, the developed novel high-performance thin-layer chromatographic process could be employed for rapid standardization of Divya-Swasari-Vati and other related herbal formulation, which would aid in quality manufacturing and product development.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
| | - Priyanka Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Silva GCD, Salvador MJ, Bottoli CBG. Towards the cosmetic application of Passiflora coccinea (Aubl.): antioxidant activity and photo protective capacity of the methanolic and glycolic leaf extracts. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Ballesteros-Vivas D, Alvarez-Rivera G, Ibánez E, Parada-Alfonso F, Cifuentes A. Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2019; 1595:144-157. [PMID: 30846312 DOI: 10.1016/j.chroma.2019.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
An integrated analytical methodology based on pressurized-liquid extraction (PLE) in two steps, followed by in vitro assays and liquid chromatography/gas chromatography coupled to high-resolution mass spectrometry (HRMS), was developed and applied for the isolation and characterization of potential bioactive metabolites from Passiflora mollissima seeds. PLE was proposed in two sequential steps: 1) recovery of the lipidic fraction using nonpolar solvents, and 2) recovery of the phenolic fraction from the defatted seeds' residue using polar solvents. Cyclohexane was selected as the most suitable extraction solvent for the seeds defatting process (20 min, 100 °C and 100 bar). PLE optimization by response surface methodology was carried out to obtain phenolics-rich extracts with the highest antioxidant activity. Optimal extraction yield (6.58%), total phenolic content (29.99 mg g-1), total flavonoids content (0.94 mg g-1) and antioxidant activity (6.94 mM trolox g-1 and EC50 of 2.66 μg mL-1) were obtained operating at 150 °C with EtOH (100%) as solvent. Untargeted and semi-targeted MS and MS/MS data-mining strategies were successfully implemented for the rapid and comprehensive profiling of the polar and lipidic PLE fractions analysed by UHPLC and GC, respectively, coupled to quadrupole time-of-flight mass spectrometry (q-TOF-MS/MS). Polyphenols-rich extracts from P. mollisima seeds were characterized for the first time applying this approach, showing a broad variety of flavonoids, genuine flavanols (e.g. (epi)fisetinidol) and abundant proanthocyanidins. This application can be considered a successful demonstration of the great potential of the proposed methodology to effectively obtain and characterize complex natural extracts with potential bioactivity, by making use of powerful integrated identification strategies to facilitate the challenging post-acquisition data processing of huge datasets generated by HRMS analysis.
Collapse
Affiliation(s)
- Diego Ballesteros-Vivas
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá D.C., 111321, Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibánez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Fabián Parada-Alfonso
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá D.C., 111321, Colombia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
6
|
de Castro ÉCP, Zagrobelny M, Cardoso MZ, Bak S. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject. Biol Rev Camb Philos Soc 2017; 93:555-573. [PMID: 28901723 DOI: 10.1111/brv.12357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/06/2023]
Abstract
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
Collapse
Affiliation(s)
- Érika C P de Castro
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Copenhagen, Denmark
| | - Mika Zagrobelny
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Copenhagen, Denmark
| | - Márcio Z Cardoso
- Department of Ecology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Copenhagen, Denmark
| |
Collapse
|