1
|
Sharma P, Ganguly M, Doi A. Analytical developments in the synergism of copper particles and cysteine: a review. NANOSCALE ADVANCES 2024; 6:3476-3493. [PMID: 38989510 PMCID: PMC11232554 DOI: 10.1039/d4na00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Cysteine, a sulfur-containing amino acid, is a vital candidate for physiology. Coinage metal particles (both clusters and nanoparticles) are highly interesting for their spectacular plasmonic properties. In this case, copper is the most important candidate for its cost-effectiveness and abundance. However, rapid oxidation destroys the stability of copper particles, warranting the necessity of suitable capping agents and experimental conditions. Cysteine can efficiently carry out such a role. On the contrary, cysteine sensing is a vital step for biomedical science. This review article is based on a comparative account of copper particles with cysteine passivation and copper particles for cysteine sensing. For the deep understanding of readers, we discuss nanoparticles and nanoclusters, properties of cysteine, and importance of capping agents, along with various synthetic protocols and applications (sensing and bioimaging) of cysteine-capped copper particles (cysteine-capped copper nanoparticles and cysteine-capped copper nanoclusters). We also include copper nanoparticles and copper nanoclusters for cysteine sensing. As copper is a plasmonic material, fluorometric and colorimetric methods are mostly used for sensing. Real sample analysis for both copper particles with cysteine and copper particles for cysteine sensing are also incorporated in this review to demonstrate their practical applications. Both cysteine-capped copper particles and copper particles for cysteine sensing are the main essence of this review. The aspect of the synergism of copper and cysteine (unlike other amino acids) is quite promising for future researchers.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
2
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Li Q, Zhu S, Wu F, Chen F, Guo C. Slice-layer COFs-aerogel: a regenerative dispersive solid-phase extraction adsorbent for determination of ultra-trace quinolone antibiotics. Mikrochim Acta 2023; 190:369. [PMID: 37624432 DOI: 10.1007/s00604-023-05925-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
A novel type of three-dimensional network structure, covalent organic frameworks (COFs) aerogel, was fabricated and applied to dispersive solid-phase extraction (dSPE) of quinolone antibiotics (QAs). Density functional theory (DFT) was applied to investigate the possible interaction mechanism and results confirmed that the strong adsorption affinity is attributed to the intralayer hydrogen bonds and π-π interaction. Furthermore, a sensitive analytical method based on COFs-aerogel for determining quinolone antibiotics residues in water and honey samples was developed and HPLC-MS/MS was used for sample detection and quantification. Under the optimal conditions, COFs-aerogel exhibited a wide linearity (0.1-500 ng∙L-1), low limits of detection (0.02-0.06 ng∙L-1), and good precision (RSD ˂ 10%) for selected QAs. A preliminary practical application of the developed method was proved by the efficient detection of quinolone antibiotics in water and food samples with good recoveries (68.2-104% and 64.0-100% for water and honey samples, respectively). Combining the experimental data with theoretical calculation, results illustrated that COFs-aerogel holds a great potential to capture contaminants and address environmental and food safety issues.
Collapse
Affiliation(s)
- Qiulin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, People's Republic of China.
| | - Simin Zhu
- China Fire and Rescue Institute, Beijing, 102200, People's Republic of China
| | - Fang Wu
- School of Material and Chemical Engineering, Bengbu University, Bengbu, 233000, People's Republic of China
| | - Feng Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, People's Republic of China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, People's Republic of China.
- Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou, 215011, People's Republic of China.
| |
Collapse
|
4
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Detection and Degradation Characterization of 16 Quinolones in Soybean Sprouts by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:foods11162500. [PMID: 36010500 PMCID: PMC9407237 DOI: 10.3390/foods11162500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, there have been increasing safety concerns about the illegal abuse of quinolone in soybean sprouts. This study aimed to establish an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous detection of 16 quinolones (QNs) in soybean sprouts, and then reveal their degradation characteristics. The samples were extracted with acetonitrile (with 1% formic acid), purified by a C18 adsorbent, and separated by an ACQUITY UPLC BEH C18 (1.7 μm, 2.1 mm × 100 mm) column. The internal standard method was applied for quantitative determination. The results demonstrated that the quantification linear range for 16 QNs was between 2.0 ng/mL and 50.0 ng/mL. The detection limits were between 0.5 μg/kg and 4.0 μg/kg, and the quantification limits were between 2.0 μg/kg and 20.0 μg/kg. This method was used to screen for quinolones in 50 batches of market soybean sprouts; the obtained results showed good agreement with those of the standard method. It was found that QNs possessed longer degradation half-life (T1/2) in the storage stage of soybean sprouts, while they degraded to some extent during the germination stage via active enzyme action. In particular, ciprofloxacin was the most stable QNs with a T1/2 of 70.71 d during the storage stage of soybean sprouts. This work not only offers an accurate and efficient QNs residual analysis strategy but also provides a reference for the supervision and management of QNs in foods.
Collapse
|
6
|
Covalent Organic Framework/Polyacrylonitrile Electrospun Nanofiber for Dispersive Solid-Phase Extraction of Trace Quinolones in Food Samples. NANOMATERIALS 2022; 12:nano12142482. [PMID: 35889706 PMCID: PMC9319950 DOI: 10.3390/nano12142482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
The extraction of quinolone antibiotics (QAs) is crucial for the environment and human health. In this work, polyacrylonitrile (PAN)/covalent organic framework TpPa–1 nanofiber was prepared by an electrospinning technique and used as an adsorbent for dispersive solid-phase extraction (dSPE) of five QAs in the honey and pork. The morphology and structure of the adsorbent were characterized, and the extraction and desorption conditions for the targeted analytes were optimized. Under the optimal conditions, a sensitive method was developed by using PAN/TpPa–1 nanofiber as an adsorbent coupled with high-performance liquid chromatography (HPLC) for five QAs detection. It offered good linearity in the ranges of 0.5–200 ng·mL−1 for pefloxacin, enrofloxacin, and orbifloxacin, and of 1–200 ng·mL−1 for norfloxacin and sarafloxacin with correlation coefficients above 0.9946. The limits of detection (S/N = 3) of five QAs ranged from 0.03 to 0.133 ng·mL−1. The intra-day and inter-day relative standard deviations of the five QAs with the spiked concentration of 50 ng·mL−1 were 2.8–4.0 and 3.0–8.8, respectively. The recoveries of five QAs in the honey and pork samples were 81.6–119.7%, which proved that the proposed method has great potential for the efficient extraction and determination of QAs in complex samples.
Collapse
|
7
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
8
|
Shelver WL, Chakrabarty S, Young JM, Byrd CJ, Smith DJ. Evaluation of rapid and standard tandem mass spectrometric methods to analyse veterinary drugs and their metabolites in antemortem bodily fluids from food animals. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:462-474. [PMID: 34939883 DOI: 10.1080/19440049.2021.2006801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antemortem bodily fluids can serve as an indicator of veterinary medicine exposure prior to food animal slaughter. A multi-residue, rapid screen electrospray ionisation mass spectrometric (RS-ESI-MS) method was developed to analyse 10 veterinary drugs or metabolites (clenbuterol, erythromycin, flunixin, 5-hydroxyflunixin, meloxicam, ractopamine, ractopamine-glucuronide, salbutamol, tylosin, and zilpaterol) in hog oral fluid and bovine urine. Simple acetonitrile extraction with salting-out was employed to remove the analytes from matrices in less than 30 minutes. Instrumental analysis time was < 1 min/injection. Regression coefficients of matrix-matched calibration curves ranged 0.9743-0.9999 across all compounds with limits of detection ranging from 0.46-108 ng mL-1 for cattle urine and 0.19-64.4 ng mL-1 for hog oral fluid across all analytes. Except for ractopamine-glucuronide, analyte recoveries ranged from 92.7-106% for oral fluid and urine fortified at 30, 100, and 300 ng mL-1, with inter-day variations of < 25%. Ractopamine-glucuronide recovery was 93.3% for oral fluid fortified at 300 ng mL-1. The RS-ESI-MS method accurately identified ractopamine and/or ractopamine-glucuronide in incurred cattle urine with results correlating well with traditional LC-MS/MS and HPLC fluorescence methods. As far as we are aware, this is the first report of the direct quantification of ractopamine-glucuronide from biological matrices without lengthy hydrolysis and cleanup steps.
Collapse
Affiliation(s)
- Weilin L Shelver
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo, ND, USA
| | | | - Jennifer M Young
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Christopher J Byrd
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - David J Smith
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo, ND, USA
| |
Collapse
|
9
|
|
10
|
Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. Int J Mol Sci 2021; 22:ijms222112014. [PMID: 34769444 PMCID: PMC8584739 DOI: 10.3390/ijms222112014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes belong to the class of extracellular vesicles of endocytic origin, which are regarded as a promising source of cancer biomarkers in liquid biopsy. As a result, an accurate, sensitive, and specific quantification of these nano-sized particles is of significant importance. Affinity-based approaches are recognized as the most valuable technique for exosome isolation and characterization. Indeed, Affibody biomolecules are a type of protein scaffold engineered with small size and enjoy the features of high thermal stability, affinity, and specificity. While the utilization of antibodies, aptamers, and other biologically active substances for exosome detection has been reported widely, there are no reports describing Affibody molecules’ usage for exosome detection. In this study, for the first time, we have proposed a novel strategy of using Affibody functionalized microbeads (AffiBeads) for exosome detection with a high degree of efficiency. As a proof-of-concept, anti-EGFR-AffiBeads were fabricated and applied to capture and detect human lung A549 cancer cell-derived EGFR-positive exosomes using flow cytometry and fluorescent microscopy. Moreover, the capture efficiency of the AffiBeads were compared with its counterpart antibody. Our results showed that the Affibody probe had a detection limit of 15.6 ng exosomes per mL (~12 exosomes per AffiBead). The approach proposed in the current study can be used for sensitive detection of low expression level markers on tumor-derived exosomes, providing a basis for early-stage cancer diagnosis.
Collapse
|
11
|
Wang H, Zhao X, Xu J, Shang Y, Wang H, Wang P, He X, Tan J. Determination of quinolones in environmental water and fish by magnetic metal organic frameworks based magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1651:462286. [PMID: 34090056 DOI: 10.1016/j.chroma.2021.462286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
The widespread use of quinolones has become an increasing global public health threat. In this study, IRMOF-3 coated SiO2/Fe3O4 were prepared via a facile room-temperature method. The prepared IRMOF-3 coated SiO2/Fe3O4 was used as a sorbent for magnetic solid phase extraction, and then combined with high-performance liquid chromatography-tandem mass spectrometry for the determination of 10 quinolines. The extraction conditions of magnetic solid phase extraction were studied in detail, and the optimal conditions were established. Under the optimal experimental conditions, the limits of quantification of 10 quinolones were in the range of 0.005-0.01 μg L-1, the relative standard deviations were 6.58-10.6% (n=7), the enrichment factors were 21.0-23.8 for water samples. The limits of quantification of 10 quinolones were in the range of 0.10-0.20 μg kg-1, the relative standard deviations were 5.95-14.5% (n=7), the enrichment factors were 1.08-1.24 for fish samples. The proposed method was applied for the determination of 10 quinolones in river water, aquacultural water and a fish sample, and enrofloxacin and ciprofloxacin were found in the fish sample.
Collapse
Affiliation(s)
- Han Wang
- Wuhan Customs District of China, Wuhan 430020, China.
| | - Xiaoya Zhao
- Wuhan Customs District of China, Wuhan 430020, China
| | - Jiawen Xu
- Wuhan Customs District of China, Wuhan 430020, China
| | - Yinzhu Shang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Hui Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Peng Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Xitong He
- Wuhan Customs District of China, Wuhan 430020, China
| | - Jie Tan
- Wuhan Customs District of China, Wuhan 430020, China
| |
Collapse
|
12
|
Hu S, Zhao M, Wang Z, Yang J, Chen D, Yan P. Development of a pH-dependent homogeneous liquid-liquid extraction by cold-induced phase separation in acetonitrile/water mixtures for determination of quinolone residues in animal-derived foods. J Chromatogr A 2021; 1649:462235. [PMID: 34038778 DOI: 10.1016/j.chroma.2021.462235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/15/2022]
Abstract
A simple extraction procedure coupled with liquid chromatography-Q Orbitrap high resolution mass spectrometry (LC-Q Orbitrap HRMS) for the determination of 19 quinolones in animal-derived foods (pork, fish, egg and milk) has been developed. Sample preparation is based on homogeneous liquid-liquid extraction at pH > 9 using water-miscible acetonitrile with cold-induced phase separation. The procedure allowed one-step enrichment and cleanup of all the 19 quinolones with different logP properties to lower aqueous phase, which eliminated the process of preconcentration and re-dissolution for sample solution. Furthermore, an adsorption phenomenon was observed between conventional borosilicate glass injection vials and most of quinolones. In detection analysis, a scheduled variable full scan strategy was performed to improve detection performance in Q Orbitrap HRMS. Under optimal conditions, a superior limit of quantitation (0.028-0.192 μg/kg) in animal-derived foods was achieved using this proposed method. Lastly, this method was validated and applied successfully in real samples.
Collapse
Affiliation(s)
- Shuping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhongle Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jiaying Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, China.
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
13
|
Copper nanoclusters as a turn-on fluorescent probe for sensitive and selective detection of quinolones. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Polyethyleneimine-functionalized Fe 3O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle. Anal Bioanal Chem 2021; 413:3529-3540. [PMID: 33813591 DOI: 10.1007/s00216-021-03304-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Fluoroquinolone (FQ) residues in foods of animal origin may threaten public health but are challenging to determine because of their low contents and complex matrices. In this study, novel polyethyleneimine-functionalized Fe3O4/attapulgite magnetic particles were prepared by a simple co-mixing method and applied as hydrophilic sorbents for the magnetic dispersive solid-phase extraction (MSPE) of three FQs, i.e., ciprofloxacin, norfloxacin, and enrofloxacin, from chicken muscle samples. The preparation of the magnetic particles was of high reproducibility and the products could be reused many times with high adsorption capacity. The key experimental factors possibly influencing the extraction efficiencies, including sample solution, extraction time, sample loading volume, desorption solution, desorption time, and elution volume were investigated. Under optimum MSPE conditions, the analytes in chicken muscle samples were extracted and then determined by RPLC-MS/MS in MRM mode. Good linearity was obtained for the analytes with correlation coefficients ranged from 0.9975 to 0.9995. The limits of detection were in the range of 0.02-0.08 μg kg-1, and the recoveries of the spiked FQs in chicken muscle samples ranged from 83.9 to 98.7% with relative standard deviations of 1.3-6.8% (n = 3). Compared with the traditional MSPE methods based on hydrophobic mechanism, this hydrophilic interaction-based method significantly simplifies the sample pretreatment procedure and improves repeatability. This method is promising for accurate monitoring of FQs in foods of animal origin.
Collapse
|
15
|
Zhang M, Chen J, Zhao F, Zeng B. Determination of fluoroquinolones in foods using ionic liquid modified Fe 3O 4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4457-4465. [PMID: 32856643 DOI: 10.1039/d0ay01045f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a simple and sensitive method based on Fe3O4/multi-walled carbon nanotubes/ionic liquid (Fe3O4/MWCNTs/IL) as the adsorbent for magnetic solid phase extraction coupled with high performance liquid chromatography was developed for the determination of trace fluoroquinolones in foods. After a simple one-pot solvothermal synthesis, Fe3O4/MWCNTs were further modified with an amine-terminated ionic liquid to enhance their dispersibility and extraction capacity. The morphology, structure and magnetic properties of the composite adsorbent were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectrometry and vibrating-sample magnetometry. Under the optimized extraction and detection conditions, the studied fluoroquinolones were enriched effectively and separated well and their UV signals were linear to their concentrations in the range of 4-1000 ng mL-1, with correlation coefficients ranging from 0.9958 to 0.9990. The enrichment factors were 29.1-43.9 fold and the limits of detection were 0.33-0.78 ng mL-1. The spiked recoveries were 85.4-105.9% for milk and 85.2-103.7% for pork samples, with relative standard deviations of 0.8-5.7%. The developed method provided a fast, sensitive and reliable determination platform for fluoroquinolones in complex real samples.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
16
|
Xu G, Dong X, Hou L, Wang X, Liu L, Ma H, Zhao RS. Room-temperature synthesis of flower-shaped covalent organic frameworks for solid-phase extraction of quinolone antibiotics. Anal Chim Acta 2020; 1126:82-90. [DOI: 10.1016/j.aca.2020.05.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
|
17
|
Ahmed S, Ning J, Peng D, Chen T, Ahmad I, Ali A, Lei Z, Abu bakr Shabbir M, Cheng G, Yuan Z. Current advances in immunoassays for the detection of antibiotics residues: a review. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1707171] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jianan Ning
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ting Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ijaz Ahmad
- Department of Animal Health, The University of Agriculture, Peshawar, Pakistan
| | - Aashaq Ali
- Wuhan institute of Virology, Chinese Academy of Science, Wuhan, People’s Republic of China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Muhammad Abu bakr Shabbir
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
18
|
Jian N, Zhao M, Liang S, Cao J, Wang C, Xu Q, Li J. High-Throughput and High-Efficient Micro-solid Phase Extraction Based on Sulfonated-Polyaniline/Polyacrylonitrile Nanofiber Mats for Determination of Fluoroquinolones in Animal-Origin Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6892-6901. [PMID: 31125221 DOI: 10.1021/acs.jafc.9b01312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We herein describe a high-throughput 96-well plate micro-solid phase extraction sample preparation technique based on novel sulfonated-polyaniline/polyacrylonitrile nanofiber mats (sulfonated-PANI/PAN NFMs) for multiresidue detection of fluoroquinolones (FQs) in various animal-origin food samples. Through the double-modification of polyaniline and sulfonic acid, the resulting functionalized sulfonated-PANI/PAN NFMs present high extraction efficiency for FQs. Compared with the existing methods, this approach demonstrates its advantages of being suitable for more sample matrices (milk, animal muscle, liver, kidney, and egg), lower sample amount (0.5 g), lower sorbent requirement (5.0 mg), lower volume of organic solvent (0.7 mL), shorter time (0.2 min per sample), and high sensitivity (0.012-0.06 μg·kg-1). In addition, sulfonated-PANI/PAN NFMs possess excellent reusability which could be reused 10 times without an obvious decrease in extraction efficiency. Combined with ultra performance liquid chromatography-tandem mass spectrometry, the novel sample preparation technique can be expected as an efficient method for routine trace FQ residue monitoring in animal-origin food samples.
Collapse
Affiliation(s)
- Ningge Jian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Sihui Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Jiankun Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004 , China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004 , China
| |
Collapse
|
19
|
Tadić Đ, Matamoros V, Bayona JM. Simultaneous determination of multiclass antibiotics and their metabolites in four types of field-grown vegetables. Anal Bioanal Chem 2019; 411:5209-5222. [DOI: 10.1007/s00216-019-01895-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
|
20
|
Hendrickson OD, Zvereva EA, Shanin IA, Zherdev AV, Dzantiev BB. Development of a multicomponent immunochromatographic test system for the detection of fluoroquinolone and amphenicol antibiotics in dairy products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3834-3842. [PMID: 30680731 DOI: 10.1002/jsfa.9605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/23/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ciprofloxacin (CIP) and chloramphenicol (CAP) are relevant antibiotics of the fluoroquinolone (FQ) and amphenicol (AP) groups, respectively, widely used in veterinary practice and they contaminate agricultural products. In this study, a rapid and sensitive immunochromatographic assay (ICA) was developed for simultaneous detection of CIP and CAP in dairy products. The ICA was carried out in a direct competitive format using gold nanoparticles as a label. RESULTS The ICA developed here allowed for the detection of CIP and CAP in Triton X-100-containing buffered saline (PBST) within 15 min with instrumental detection limits of 20 pg mL-1 and 0.5 ng mL-1 , respectively, and with a visual detection limit of 5 ng mL-1 for both antibiotics. The ICA showed cross-reactivity (69-160%) to 19 antibiotics in the FQ group and no cross-reactivity (<0.1%) to 2 antibiotics of the AP group. The ICA allowed detection of CIP and CAP in a panel of dairy products by employing a simple procedure of preliminary sample preparation. The detection limits for the two antibiotics were the same as in PBST. The analytical recoveries of CIP and CAP in dairy products ranged from 83% to 120%. CONCLUSION The analytical characteristics of the test system allow its use for the detection of antibiotics in milk and dairy products during all steps of production. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- O D Hendrickson
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Zvereva
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - I A Shanin
- M.V. Lomonosov Moscow State University, Moscow, Russia
- «Xema», Moscow, Russia
| | - A V Zherdev
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - B B Dzantiev
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
22
|
Buglak AA, Shanin IA, Eremin SA, Lei HT, Li X, Zherdev AV, Dzantiev BB. Ciprofloxacin and Clinafloxacin Antibodies for an Immunoassay of Quinolones: Quantitative Structure⁻Activity Analysis of Cross-Reactivities. Int J Mol Sci 2019; 20:ijms20020265. [PMID: 30641870 PMCID: PMC6359390 DOI: 10.3390/ijms20020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022] Open
Abstract
A common problem in the immunodetection of structurally close compounds is understanding the regularities of immune recognition, and elucidating the basic structural elements that provide it. Correct identification of these elements would allow for select immunogens to obtain antibodies with either wide specificity to different representatives of a given chemical class (for class-specific immunoassays), or narrow specificity to a unique compound (mono-specific immunoassays). Fluoroquinolones (FQs; antibiotic contaminants of animal-derived foods) are of particular interest for such research. We studied the structural basis of immune recognition of FQs by antibodies against ciprofloxacin (CIP) and clinafloxacin (CLI) as the immunizing hapten. CIP and CLI possess the same cyclopropyl substituents at the N1 position, while their substituents at C7 and C8 are different. Anti-CIP antibodies were specific to 22 of 24 FQs, while anti-CLI antibodies were specific to 11 of 26 FQs. The molecular size was critical for the binding between the FQs and the anti-CIP antibody. The presence of the cyclopropyl ring at the N1 position was important for the recognition between fluoroquinolones and the anti-CLI antibody. The anti-CIP quantitative structure–activity relationship (QSAR) model was well-equipped to predict the test set (pred_R2 = 0.944). The statistical parameters of the anti-CLI model were also high (R2 = 0.885, q2 = 0.864). Thus, the obtained QSAR models yielded sufficient correlation coefficients, internal stability, and predictive ability. This work broadens our knowledge of the molecular mechanisms of FQs’ interaction with antibodies, and it will contribute to the further development of antibiotic immunoassays.
Collapse
Affiliation(s)
- Andrey A Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
- Faculty of Physics, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Ilya A Shanin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
- XEMA Company Limited, Ninth Parkovaya street 48, 105264 Moscow, Russia.
| | - Sergei A Eremin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| | - Boris B Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| |
Collapse
|
23
|
Hendrickson OD, Zvereva EA, Shanin IA, Zherdev AV, Tarannum N, Dzantiev BB. Highly Sensitive Immunochromatographic Detection of Antibiotic Ciprofloxacin in Milk. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s000368381806008x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Li J, Ming M, Huai W, Cai Z, Sun Z, Ye N. Fast and simple determination of moroxydine residues in pig and chicken samples by ultra-performance liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2111-2119. [PMID: 30211663 DOI: 10.1080/19440049.2018.1512756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A general solid-phase extraction (SPE) method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the determination of moroxydine residues in pig and chicken samples has been developed. After extraction and purification of real samples, moroxydine residues were detected using a hydrophobic interaction liquid chromatography column with an optimised mobile phase composition. The extraction reagents, the kind of SPE columns and the type of eluents were optimised to achieve the maximum extraction efficiency. The matrix effects from the animal tissue influenced the quality of the quantitative data obtained. Under the optimised conditions, the moroxydine residues in pig and chicken samples spiked at three levels (1.0 μg/kg, 5.0 μg/kg and 10.0 μg/kg) were determined with good recoveries (61.5%-105.4%) and adequate relative standard deviations (3.2%-13.0%). In pig and chicken samples, the limit of detection (LOD) was 0.3 μg/kg, and the limit of quantification (LOQ) was 1.0 μg/kg. A sufficiently linear relationship in the range of 1.0 μg/kg-20.0 μg/kg was achieved with a good correlation coefficient (R2 ≥ 0.99).
Collapse
Affiliation(s)
- Jian Li
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Meiting Ming
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| | - Wenhui Huai
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Zhimin Cai
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| | - Zhiwen Sun
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Nengsheng Ye
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| |
Collapse
|
25
|
Aresta A, Cotugno P, Zambonin C. Determination of Ciprofloxacin, Enrofloxacin, and Marbofloxacin in Bovine Urine, Serum, and Milk by Microextraction by a Packed Sorbent Coupled to Ultra-High Performance Liquid Chromatography. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1496093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | | | - Carlo Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
26
|
Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Barrón D, Navalón A, Zafra-Gómez A. Determination of quinolone residues in raw cow milk. Application of polar stir-bars and ultra-high performance liquid chromatography–tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1127-1138. [DOI: 10.1080/19440049.2018.1430382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rocío Rodríguez-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - María Teresa García-Córcoles
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - Morsina Çipa
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
- Department of Chemistry, University of Tirana, Tirana, Albania
| | - Dolores Barrón
- Department of Nutrition, Food Science and Gastronomy, INSA, Torribera Campus, University of Barcelona, Barcelona, Spain
| | - Alberto Navalón
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Hu Y, Cheng H, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. ENVIRONMENT INTERNATIONAL 2017; 107:111-130. [PMID: 28719840 DOI: 10.1016/j.envint.2017.07.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Driven by the growing demand for food products of animal origin, industrial livestock and poultry production has become increasingly popular and is on the track of becoming an important source of environmental pollution in China. Although concentrated animal feeding operations (CAFOs) have higher production efficiency and profitability with less resource consumption compared to the traditional family-based and "free range" farming, they bring significant environmental pollution concerns and pose public health risks. Gaseous pollutants and bioaerosols are emitted directly from CAFOs, which have health implications on animal producers and neighboring communities. A range of pollutants are excreted with the animal waste, including nutrients, pathogens, natural and synthetic hormones, veterinary antimicrobials, and heavy metals, which can enter local farmland soils, surface water, and groundwater, during the storage and disposal of animal waste, and pose direct and indirect human health risks. The extensive use of antimicrobials in CAFOs also contributes to the global public health concern of antimicrobial resistance (AMR). Efforts on treating the large volumes of manure generated in CAFOs should be enhanced (e.g., by biogas digesters and integrated farm systems) to minimize their impacts on the environment and human health. Furthermore, the use of veterinary drugs and feed additives in industrial livestock and poultry farming should be controlled, which will not only make the animal food products much safer to the consumers, but also render the manure more benign for treatment and disposal on farmlands. While improving the sustainability of animal farming, China also needs to promote healthy food consumption, which not only improves public health from avoiding high-meat diets, but also slows down the expansion of industrial animal farming, and thus reduces the associated environmental and public health risks.
Collapse
Affiliation(s)
- Yuanan Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|