1
|
Ge D, Yang J, Yu Z, Lu J, Chen Y, Jin Y, Ke Y, Fu Q, Liang X. Synthesis and evaluation of aromatic stationary phases based on linear solvation energy relationship model for expanded application in supercritical fluid chromatography. J Chromatogr A 2024; 1716:464640. [PMID: 38219626 DOI: 10.1016/j.chroma.2024.464640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
In the last decade, the separation application based on aromatic stationary phases has been demonstrated in supercritical fluid chromatography (SFC). In this paper, four aromatic stationary phases involving aniline (S-aniline), 1-aminonaphthalene (S-1-ami-naph), 1-aminoanthracene (S-1-ami-anth) and 1-aminopyrene (S-1-ami-py) were synthesized based on full porous particles (FPP) silica, which were not end-capped for providing extra electrostatic interaction. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The aromatic stationary phases with five positive parameters (a, b, s, e and d+) can provide hydrogen bonding, π-π, dipole-dipole and cation exchange interactions, which belong to the moderate polar phases. The LSER results obtained using routine test solutes demonstrated that the aforementioned interactions of four aromatic stationary phases were influenced by the type and bonding density of the ligand, but to a certain extent. Furthermore, the LSER data verified that the S-1-ami-anth column based on full porous particles silica had higher cation exchange capacity (d+ value), compared to the commercialized 1-AA column (based on the ethylene-bridged hybrid particles). The relationship between the d+ value and SFC additive was quantitatively proved so as to regulate electrostatic interaction reasonably. This value was greatly increased by phosphoric acid, slightly increased by trifluoroacetic acid and formic acid, but significantly reduced by ammonium formate and diethylamine. Taking the S-1-ami-naph column as an example, better peek shape of the flavonoids was obtained after the addition of 0.1 % phosphoric acid in MeOH while isoquinoline alkaloids were eluted successfully within 11 min after adding 0.1 % diethylamine in MeOH. Combined with the unique π-π interaction and controllable electrostatic interaction, the aromatic stationary phases in this study have been proven to have expandable application potential in SFC separation.
Collapse
Affiliation(s)
- Dandan Ge
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zimo Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiahao Lu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanchun Chen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
2
|
Miao Q, Yang Y, Du L, Tang C, Zhao Q, Li F, Yao X, Meng Y, Qin Y, Zhang J. Development and application of a SFC-DAD-MS/MS method to determine carotenoids and vitamin A in egg yolks from laying hens supplemented with β-carotene. Food Chem 2023; 414:135376. [PMID: 36827774 DOI: 10.1016/j.foodchem.2022.135376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
β-Carotene, a provitamin A carotenoid, can be converted into vitamin A in animals' bodies, and can also be accumulated intactly in many animal products. In this study, supercritical fluid chromatography-tandem mass spectrometry was utilized to determine β-carotene and different forms of vitamin A in eggs simultaneously. According to the results, β-carotene contained in yolk reached a plateau after about 2 weeks of supplementation. With an increase in dietary supplement level, the amount of β-carotene gradually increased, as well as slightly changing the yolk color. Moreover, the contents of retinoids including retinol, retinyl propionate, retinyl palmitate and retinyl stearate were also elevated in yolks with the β-carotene additive levels; meanwhile, the lutein and zeaxanthin decreased. On the whole, β-carotene in the diet of laying hens could be partially deposited in egg yolk, and the contents of vitamin A in yolk could be increased due to β-carotene bioconversion.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihong Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao Yao
- Agilent Technologies(China) Co.,Ltd, No.3 Wang Jing Bei Road, Chao Yang District, Bei Jing 100102, China
| | - Ying Meng
- Agilent Technologies(China) Co.,Ltd, No.3 Wang Jing Bei Road, Chao Yang District, Bei Jing 100102, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Jiang D, Yang J, Chen Y, Jin Y, Fu Q, Ke Y, Liang X. An attempt to apply a subtraction model for characterization of non-polar stationary phase in supercritical fluid chromatography. J Chromatogr A 2023; 1701:464071. [PMID: 37236051 DOI: 10.1016/j.chroma.2023.464071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
This study verified the feasibility of using a subtraction model to characterize the non-polar stationary phases (including C4, C8, and phenyl-type) in supercritical fluid chromatography (SFC). The model with 6 terms was expressed as log α = η'H + θ'P + β'A + α'B + κ'C + σ'S, where a term θ'P indicating dipole or induced dipole interaction was intentionally supplemented. Ethylbenzene and SunFire C8 were respectively defined as the reference solute and column. A 7-step modeling procedure was proposed: in the first 6 steps, except σ'S, by the use of a bidirectional fitting method, other parameters were calculated based on the equation: log α = log (ki/kref) ≈ η'H + θ'P + β'A + α'B + κ'C; and in the 7th step, residual analysis was employed to describe the σ'S term according to the equation: σ'S = log αexp. - log αpre. Furthermore, six columns that were not involved in modeling process and 12 compounds with unknown retention were used for methodology validation. It showed good predictions of log k, as demonstrated by adjusted determination coefficient (R2adj) from 0.9927 to 0.9998 (column) and from 0.9940 to 0.9999 (compound), respectively. The subtraction model emphasized the contribution of dipole or induced dipole interaction to the retention in SFC, and it obtained the σ'S term through residual analysis. Moreover, it made reasonable physical-chemical sense as the linear solvation energy relationship (LSER) model did, with the distinct advantages of better fitting and more accurate prediction. This study provided some new insights into the characterization of non-polar stationary phases in SFC.
Collapse
Affiliation(s)
- Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanchun Chen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
4
|
Jiang D, Wu D, Zhou G, Dai Y, Yang J, Jin Y, Fu Q, Ke Y, Liang X. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship. J Chromatogr A 2023; 1690:463781. [PMID: 36638687 DOI: 10.1016/j.chroma.2023.463781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Fundamental research on supercritical fluid chromatography (SFC) has gained considerable interest, with many studies focusing on its retention mechanism based on the linear solvation energy relationship (LSER) model. In this paper, a series of alkylsiloxane-bonded stationary phases were specifically designed and synthesized, then evaluated using the mobile phase composed of CO2 with 10% (v/v) methanol. The study demonstrated the close relationship between the interactions (manner and magnitude) of stationary phases and the C-chain length, bonding density and the endcapping treatment. All C8 phases provide positive e, v and negative s, whose magnitude was regularly affected by bonding density. It was worth mentioning the non-endcapped C8 phases could provide H-bonding (positive a and b) by reducing the bonding density of the alkyl chain. Once it was endcapped, the interaction manner did not vary with bonding density adjustment. The non-endcapped C4 phases with higher bonding density could establish additional dispersion interaction (positive v). It can be seen that two synthesis strategies, 1) non-endcapped, long C-chain (C8) combined with low bonding density, and 2) non-endcapped, short C-chain (C4) combined with high bonding density, can obtain the alkylsiloxane-bonded stationary phases (C8-1 and C4-3) to provide both polar and dispersion interactions, showing different separation selectivity. Furthermore, the LSER model with ionic terms was applied to evaluate partial C8 columns, and its rationality was verified. The non-endcapped C8 showed great d+ values, which originated from the silanol groups. C8SCX also possessed a great d+ value due to the benzenesulfonic acid groups. A remarkable result showed that C8SAX exhibited prominent d- and d+ values simultaneously due to the combined effect of silanol and quaternary ammonium groups, which indicates the unique selectivity when separating ionic compounds. This study provides in-depth insights into the retention mechanism of alkylsiloxane-bonded stationary phases in SFC, as well as a reference for the design of SFC stationary phases.
Collapse
Affiliation(s)
- Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Di Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guanghao Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Xu L, Kang M, Xiong F, Sui Y, Huang Y. Cinnamaldehyde‐based Natural Product as Viscosity‐Sensitive Sensor toward Liquid Safety Inspection. ChemistrySelect 2022. [DOI: 10.1002/slct.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices South China University of Technology Guangzhou Guangdong 510640 China
| | - Minqing Kang
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Fangzhi Xiong
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yanrong Huang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
7
|
Shen Y, Wei Y, Zhu C, Cao J, Han DM. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Karimzadeh Z, Mahmoudpour M, Guardia MDL, Nazhad Dolatabadi JE, Jouyban A. Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Ding L, Shao X, Wang M, Zhang H, Lu L. Dual-mode immunoassay for diethylstilbestrol based on peroxidase activity and photothermal effect of black phosphorus-gold nanoparticle nanohybrids. Anal Chim Acta 2021; 1187:339171. [PMID: 34753561 DOI: 10.1016/j.aca.2021.339171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Nanozyme-mediated 3,3',5,5'-tetramethylbenzidine (TMB) - H2O2 systems have spawned the establishment of multiple colorimetric sensing platforms that are effective but sometimes subject to low sensitivity. Taking temperature as the output signal, photothermal effects lead to new strategies for sensitive detection. In this paper, a colorimetric and photothermal dual-mode immunoassay for diethylstilbestrol (DES) was constructed. It is based on the oxidation reaction of TMB catalyzed by black phosphorus-gold nanoparticle (BP/Au) nanohybrids, and the kinetics as well as catalytic mechanism of the nanohybrids were investigated in detail for the first time. Herein, the nanohybrids playcatalytic and photothermal dual roles. Moreover, the one-electron oxidation product of TMB (oxidized TMB) not only acts as chromogenic agent but also an excellent NIR laser-driven photothermal agent. The temperature (ΔT/°C) was gauged by a portable digital thermometer. Through an indirect competition strategy, a simple, sensitive, and economic immunosensor was proposed. Higher DES content in the sample correlated with less BP/Au nanohybrids conjugated to the surface of ELISA microplate, a weaker color change, and a lower temperature variation when exposed to laser irradiation. This method was applied for DES determination in real samples with gratifying recovery rates, showing great promise in food safety inspection applications.
Collapse
Affiliation(s)
- Linhe Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xinyu Shao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
10
|
Yamamoto K, Machida K, Kotani A, Hakamata H. Emerging Separation Techniques in Supercritical Fluid Chromatography. Chem Pharm Bull (Tokyo) 2021; 69:970-975. [PMID: 34602578 DOI: 10.1248/cpb.c21-00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supercritical fluid chromatography (SFC) has unique separative characteristics distinguished from those of HPLC and gas chromatography. At present, SFC is widely used and there are many applications in various biological, medical, and pharmaceutical fields. In this review, we focus on recently developed novel techniques related to SFC separation including: new column stationary phases, microfluidics, two-dimensional separation, and gas-liquid separation. In addition, we discuss the application of SFC using a water-containing modifier to biological molecules such as amino acids, peptides, and small proteins that had been challenging analytes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Koichi Machida
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Akira Kotani
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hakamata
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
11
|
Hoang TPT, Touboul D. Comparison of internal energy distributions generated by supercritical fluid chromatography versus liquid chromatography hyphenated with electrospray high resolution mass spectrometry. J Chromatogr A 2020; 1634:461703. [PMID: 33234292 DOI: 10.1016/j.chroma.2020.461703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
The internal energy distributions of thermometer ions dissolved in supercritical and liquid solvents and produced in the gas phase by electrospray (ESI) were measured and compared by the survival yield method. The influence of different chromatographic conditions such as the nature of solvents, the composition of the mobile phase, the pressure of the back pressure regulator was studied for supercritical fluid chromatography (SFC) whereas the influence of the composition and of the flow rate of the mobile phase was investigated for liquid chromatography (LC). The MS instrumental parameters were studied in parallel for SFC and LC showing that the drying gas temperature and the fragmentor voltage affected the internal energy distribution, whereas the capillary voltage did not modify the internal energy distribution. A comparison of the internal energy distributions generated by SFC and LC was carried out leading to conclude that SFC led to higher internal energy, i.e. more in-source fragment ions, than LC.
Collapse
Affiliation(s)
- Thi Phuong Thuy Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Application of Chiral and Achiral Supercritical Fluid Chromatography in Pesticide Analysis: A Review. J Chromatogr A 2020; 1634:461684. [DOI: 10.1016/j.chroma.2020.461684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|
13
|
|