1
|
Zhou H, Yuan J, Xu J, Wang Y, Xiong P, Zhao G, Jiang X, Peng Y, Ye Y, Cheng G, Zheng J, Liu J. Mass Spectrometry Imaging of Amino Acids Enabled by Quaternized Pyridinium Salt MALDI Probe. Anal Chem 2024. [PMID: 39149969 DOI: 10.1021/acs.analchem.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.
Collapse
Affiliation(s)
- Hao Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jie Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Cancer Metastasis Institute, Fudan University, Shanghai, 201206, P. R. China
| | - Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Pei Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Xianhuan Jiang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Liu Y, Bai J, Dong X, Cao Y, Bao M, Lu Y, Zeng H, Zhan L, Guo Y. Online Charge-Generation Derivatization by Electrochemical Radical Cations of Thianthrene: Mass Spectrometry Imaging of Estrogens in Biological Tissues. Anal Chem 2024. [PMID: 39031066 DOI: 10.1021/acs.analchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Estrogens play a significant role in endocrinology and oncology. Although separation methods coupled with mass spectrometry (MS) have emerged as a powerful tool for studying estrogens, imaging the spatial distributions of estrogens is crucial but remains challenging due to its low endogenous concentration and poor ionization efficiency. Charge-generation derivatization, such as N-alkylpyridinium quaternization and S-methyl thioetherification, represents a method wherein neutral molecules involving analytes and derivatization reagents undergo chemical reactions to establish permanent charges directly onto the analytes to improve detection sensitivity. Here, we developed a novel derivatization reagent, thianthrene (TT), which enabled oxidization to radical cations ([TT]•+) using an electrochemical method and completed the online charge-generation derivatization of estrogens on a mass spectrometry imaging platform. In this strategy, [TT]•+ can efficiently and selectively derivatize estrogens via an electrophilic aromatic substitution reaction. Results indicated that derivatization with [TT]•+ can significantly enhance imaging sensitivity (3 orders of magnitude), enabling the visualization of estrogen and its metabolites in ovarian and breast tissues. Furthermore, a higher mass intensity of these estrogens was captured in breast para-cancerous tissues than in cancerous tissues, which might provide estrogens spatial dimension information for further research on the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Yingchao Liu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxia Dong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqi Cao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingmai Bao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
4
|
Cizmarova I, Mikus P, Svidrnoch M, Piestansky J. Development and Validation of a Capillary Zone Electrophoresis-Tandem Mass Spectrometry Method for Simultaneous Quantification of Eight β-Lactam Antibiotics and Two β-Lactamase Inhibitors in Plasma Samples. Pharmaceuticals (Basel) 2024; 17:526. [PMID: 38675486 PMCID: PMC11054939 DOI: 10.3390/ph17040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Monitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. Pharmacokinetic/pharmacodynamic (PK/PD) studies highlight the time-dependent antibacterial activity of these antibiotics, emphasizing the need for personalized dosing. Therapeutic drug monitoring (TDM) is essential, requiring rapid and accurate analytical methods for precise determination of drugs in biological material (typically plasma or serum). This study presents a novel capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) method designed for the simultaneous quantification of five penicillin antibiotics, two cephalosporins, one carbapenem, and two β-lactamase inhibitors in a single run. The method involves a simple sample pretreatment-precipitation with organic solvent-and has a run time of 20 min. Optimization of CZE separation conditions revealed that 20 mM ammonium hydrogen carbonate (NH4HCO3) serves as the optimal background electrolyte (BGE). Positive electrospray ionization (ESI) mode, with isopropyl alcohol (IP)/10 mM ammonium formate water solution (50/50, v/v) as the sheath liquid, was identified as the optimal condition for MS detection. Method validation according to the Food and Drug Administration (FDA) guideline for development of bioanalytical methods demonstrated satisfactory selectivity, linearity, recovery, robustness, and stability. The method's practicality was evaluated using the Blue Applicability Grade Index (BAGI), yielding a score of 77.5. Moreover, the greenness of the proposed method was evaluated by two commonly used metric tools-Analytical GREEnness (AGREE) and Green Analytical Procedure Index (GAPI). The developed CZE-MS/MS method offers a practical and reliable approach for quantifying a broad spectrum of β-lactam antibiotics in plasma. Its ability to simultaneously quantify multiple analytes in a single run, coupled with a straightforward sample pretreatment, positions it as a valuable and prospective tool for TDM in critically ill patients.
Collapse
Affiliation(s)
- Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia; (I.C.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia; (I.C.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Martin Svidrnoch
- AGEL Lab, Revolucni 2214/35, CZ-741 01 Novy Jicin, Czech Republic;
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| |
Collapse
|
5
|
Wang W, Zhen S, Ping Y, Wang L, Zhang Y. Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring. Front Oncol 2024; 14:1331215. [PMID: 38384814 PMCID: PMC10879439 DOI: 10.3389/fonc.2024.1331215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Liquid biopsy, a novel detection method, has recently become an active research area in clinical cancer owing to its unique advantages. Studies on circulating free DNA, circulating tumor cells, and exosomes obtained by liquid biopsy have shown great advances and they have entered clinical practice as new cancer biomarkers. The metabolism of the body is dynamic as cancer originates and progresses. Metabolic abnormalities caused by cancer can be detected in the blood, sputum, urine, and other biological fluids via systemic or local circulation. A considerable number of recent studies have focused on the roles of metabolic molecules in cancer. The purpose of this review is to provide an overview of metabolic markers from various biological fluids in the latest clinical studies, which may contribute to cancer screening and diagnosis, differentiation of cancer typing, grading and staging, and prediction of therapeutic response and prognosis.
Collapse
Affiliation(s)
- Wenqian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Shanshan Zhen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Starkova Z, Polovkov N, Pikovskoy I, Butyrin R, Kanateva A, Borisov R, Zaikin V. Convenient high resolution mass spectrometry characterization of aromatic sulfur-containing petroleum components following by preliminary S-alkylation with aliphatic alcohols. Talanta 2024; 268:125353. [PMID: 37952314 DOI: 10.1016/j.talanta.2023.125353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
This paper describes rather suitable and variable preliminary derivatization strategy that may precede the molecular level characterization of sulfur-containing compounds of a particularly aromatic nature by high-resolution MALDI and ESI mass spectrometry. We demonstrated for the first time that free aliphatic alcohols (primary 1-alkanols C3-C20) in the presence of triflic acid provide easy S-alkylation of not only saturated sulfides but also most typical aromatic sulfur-containing compounds (benzothiophene, dibenzothiophene and their homologues) widely distributed and frequently analyzed in oil. The reaction proceeds quantitatively at rather mild conditions and gives rise to corresponding S-alkyl sulfonium salts the cation moieties of which can be detected using MALDI and ESI mass spectrometry with excellent signal/noise (S/N) ratios; the response ratios for target ions being quite close for both methods. Collision-induced dissociation (CID) of S-alkylsulfonium cations proceeds only by the elimination of entire S-alkyl group yielding protonated molecule of the analyte. This process can be useful for a reliable determination of target aromatic heterocyclic compounds in complex mixtures. The applicability of the method is illustrated by the analysis of deasphalted medium petroleum sample. The proposed derivatization principle is considered to be highly applicable as an alternative approach to routine characterization and sensitive determination of most typical sulfur-containing compounds and particularly of aromatic S-heterocycles in crude oils by soft-ionization mass spectrometry methods.
Collapse
Affiliation(s)
- Zhanna Starkova
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninskiy Prosp., Moscow, 119991, Russian Federation
| | - Nikolay Polovkov
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninskiy Prosp., Moscow, 119991, Russian Federation
| | - Ilya Pikovskoy
- Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, Arkhangelsk, 163002, Russian Federation
| | - Roman Butyrin
- V.I.Shpilman Research and Analytical Center for the Rational Use of the Subsoil, 2 Studencheskaya str, Khanty-Mansiysk, 628007, Russian Federation
| | - Anastasiya Kanateva
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninskiy Prosp., Moscow, 119991, Russian Federation
| | - Roman Borisov
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninskiy Prosp., Moscow, 119991, Russian Federation; Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, Arkhangelsk, 163002, Russian Federation; D.Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Pl., Moscow, 125047, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str, Moscow, 117198, Russian Federation.
| | - Vladimir Zaikin
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninskiy Prosp., Moscow, 119991, Russian Federation
| |
Collapse
|
7
|
Latz M, Böhme A, Ulrich N. Reactivity-based identification of oxygen containing functional groups of chemicals applied as potential classifier in non-target analysis. Sci Rep 2023; 13:22828. [PMID: 38129561 PMCID: PMC10739825 DOI: 10.1038/s41598-023-50240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
In this work, we developed a reactivity-based strategy to identify functional groups of unknown analytes, which can be applied as classifier in non-target analysis with gas chromatography. The aim of this strategy is to reduce the number of potential candidate structures generated for a molecular formula determined by high resolution mass spectrometry. We selected an example of 18 isomers with the molecular formula C12H10O2 to test the performance of different derivatization reagents, whereas our aim was to select mild and fast reaction conditions. Based on the results for the isomers, we developed a four-step workflow for the identification of functional groups containing oxygen.
Collapse
Affiliation(s)
- Milena Latz
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103, Leipzig, Germany
| | - Alexander Böhme
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nadin Ulrich
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
8
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
9
|
Hinou H. DHB Matrix with Additives for Direct MALDI Mass Spectrometry of Carbohydrates and Glycoconjugates. TRENDS GLYCOSCI GLYC 2023. [DOI: 10.4052/tigg.2214.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Hinou H. DHB Matrix with Additives for Direct MALDI Mass Spectrometry of Carbohydrates and Glycoconjugates. TRENDS GLYCOSCI GLYC 2023. [DOI: 10.4052/tigg.2214.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Eberwine J, Kim J, Anafi RC, Brem S, Bucan M, Fisher SA, Grady MS, Herr AE, Issadore D, Jeong H, Kim H, Lee D, Rubakhin S, Sul JY, Sweedler JV, Wolf JA, Zaret KS, Zou J. Subcellular omics: a new frontier pushing the limits of resolution, complexity and throughput. Nat Methods 2023; 20:331-335. [PMID: 36899160 PMCID: PMC10049458 DOI: 10.1038/s41592-023-01788-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
We argue that the study of single-cell subcellular organelle omics is needed to understand and regulate cell function. This requires and is being enabled by new technology development.
Collapse
Affiliation(s)
- James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ron C Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maja Bucan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen A Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - M Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Herr
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyejoong Jeong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, , University of Pennsylvania, Philadelphia, PA, USA
| | - HyunBum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, , University of Pennsylvania, Philadelphia, PA, USA
| | - Stanislav Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jai-Yoon Sul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Starkova Z, Ilyushenkova V, Polovkov N, Voskressenskaya D, Pikovskoi I, Tebenikhin M, Vtorushina E, Kanateva A, Borisov R, Zaikin V. The Use of Polydialkylsiloxanes/Triflic Acid as Derivatization Agents in the Analysis of Sulfur-Containing Aromatics by "Soft"-Ionization Mass Spectrometry. Molecules 2022; 27:molecules27238600. [PMID: 36500695 PMCID: PMC9739198 DOI: 10.3390/molecules27238600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic sulfur-containing compounds are widely distributed in oil, especially in its low-volatile and heavy fractions (resins, asphaltenes), and this dictates the need for their determination when reliable methods for sulfur removing, cleaning and processing oil are developed. In these cases, "soft" ionization mass spectrometry methods, based on electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), are particularly effective. However, aromatic sulfur-containing compounds have low polarity and cannot be readily ionized by these methods. To overcome the problem, their preliminary conversion into sulfonium salts by the action of alkyl iodides and a silver-containing agent is widely used. In the process of developing more economical derivatization methods, we found a rather unexpected possibility of implementing S-alkylation of organic sulfides with commercial polydialkylsiloxanes (alkyl = CH3 or C2H5) in the presence of triflic acid (CF3SO3H) as a superacid co-alkylating agent. For homologous dibenzothiophenes as a typical model representative of petroleum sulfur-containing aromatic compounds, ESI and MALDI mass spectra exhibited the signals of corresponding S-alkylsulfonium salts with a high signal-to-noise ratio. A rational mechanism for the described chemical transformation is proposed, including the indispensable activation by triflic acid and the cleavage of the Si-C bond. Specific collision-induced dissociation of corresponding S-alkylated sulfonium cations is considered. The applicability of the derivatization approach to the analysis of petroleum products by high-resolution mass spectrometry is demonstrated.
Collapse
Affiliation(s)
- Zhanna Starkova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Valentina Ilyushenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Nikolay Polovkov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Daria Voskressenskaya
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Ilya Pikovskoi
- Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, 163002 Arkhangelsk, Russia
| | - Mikhail Tebenikhin
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Ella Vtorushina
- V.I. Shpilman Research and Analytical Center for the Rational Use of the Subsoil, 2 Studencheskaya Str., 628007 Khanty-Mansiysk, Russia
| | - Anastasiia Kanateva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Roman Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
- Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, 163002 Arkhangelsk, Russia
- Department of Plastics, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Pl., 125047 Moscow, Russia
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
- Correspondence:
| | - Vladimir Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| |
Collapse
|
13
|
Matveeva MD, Zimens ME, Topolyan AP, Zhilyaev DI, Voskressenskaya DL, Krivosheina MS, Borisov RS, Zaikin VG. 1-Pyrenylboronic Acid as a Reactive Matrix for the Analysis of Polyfunctional Compounds by MALDI Mass Spectrometry: New Possibilities. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822140040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Starkova ZE, Polovkov NY, Kanateva AY, Borisov RS, Zaikin VG. Isomeriс Effects in the Mass Spectra of Stimulated Dissociation of Sulfonium Cations Desorbed from S-Alkylated Thiacyclanes under MALDI Conditions: A Convenient Method for the Derivatization of Sulfides with Alkyl Formates. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Polovkov NY, Topolyan AP, Ilyushenkova VV, Danilov AD, Zimens ME, Borisov RS, Zaikin VG. Derivatization with the Introduction of a Fixed Charge for the Analysis of Low-Molecular-Weight Oligopeptides by MALDI Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Cerrato A, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Laganà A. Novel Aza-Paternò-Büchi Reaction Allows Pinpointing Carbon-Carbon Double Bonds in Unsaturated Lipids by Higher Collisional Dissociation. Anal Chem 2022; 94:13117-13125. [PMID: 36121000 PMCID: PMC9523615 DOI: 10.1021/acs.analchem.2c02549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The evaluation of double bond positions in fatty acyl
chains has
always been of great concern given their significance in the chemical
and biochemical role of lipids. Despite being the foremost technique
for lipidomics, it is difficult in practice to obtain identification
beyond the fatty acyl level by the sole high-resolution mass spectrometry.
Paternò–Büchi reactions of fatty acids (FAs)
with ketones have been successfully proposed for pinpointing double
bonds in FAs in combination with the collision-induced fragmentation
technique. In the present paper, an aza-Paternò–Büchi
(aPB) reaction of lipids with 6-azauracil (6-AU) was proposed for
the first time for the determination of carbon–carbon double
bonds in fatty acyl chains using higher collisional dissociation in
the negative ion mode. The method was optimized using free FA and
phospholipid analytical standards and compared to the standard Paternò–Büchi
reaction with acetone. The introduction of the 6-AU moiety allowed
enhancing the ionization efficiency of the FA precursor and diagnostic
product ions, thanks to the presence of ionizable sites on the derivatizing
agent. Moreover, the aPB derivatization allowed the obtention of deprotonated
ions of phosphatidylcholines, thanks to an intramolecular methyl transfer
from the phosphocholine polar heads during ionization. The workflow
was finally applied for pinpointing carbon–carbon double bonds
in 77 polar lipids from an yeast (Saccharomyces cerevisiae) extract.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
17
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
18
|
Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Borisov R, Kanateva A, Zhilyaev D. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques. Front Chem 2022; 9:771801. [PMID: 34976947 PMCID: PMC8719418 DOI: 10.3389/fchem.2021.771801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
The combination of planar chromatography with desorption/ionization mass-spectrometry (MS) techniques provides chemists with unique tools for fast and simple separation of mixtures followed by the detection of analytes by the most powerful analytical method. Since its introduction in the early 1990s, thin-layer chromatography (TLC)/matrix-assisted mass spectrometry (MALDI) has been used for the analysis of a wide range of analytes, including natural and synthetic organic compounds. Nowadays, new desorption/ionization approaches have been developed and applied in conjunction with planar chromatography competing with MALDI. This review covers recent developments in the combination of TLC with various desorption/ionization MS methods which were made in recent several years.
Collapse
Affiliation(s)
- Roman Borisov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiia Kanateva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Zhilyaev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
20
|
Understanding carotenoid biosynthetic pathway control points using metabolomic analysis and natural genetic variation. Methods Enzymol 2022; 671:127-151. [DOI: 10.1016/bs.mie.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Borisov RS, Matveeva MD, Zaikin VG. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit Rev Anal Chem 2021; 53:1027-1043. [PMID: 34969337 DOI: 10.1080/10408347.2021.2001309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Collapse
Affiliation(s)
- Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|