1
|
Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview. Top Curr Chem (Cham) 2022; 380:49. [PMID: 36123408 DOI: 10.1007/s41061-022-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (DA), linker/branch (π), or acceptors (A) in D-π-A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D-π-A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature. Similarly, in the case of inorganic complexes, the presence of IM motifs as ligands can improve the light-harvesting ability, give facilely tuned HOMO and LUMO energy levels, increase the charge recombination resistance and photostability. This results in enhanced photocurrent (JSC) and photovoltage (VOC) and consequently solar-to-power conversion efficiency (η) of DSSC devices based on Ru(II) and Ir(III) complexes. Considering the interesting DSSC applications of IM-derived molecules, in this review, we therefore comprehensively discuss their photophysical, electrochemical and photovoltaic properties reported so far and establish their structure-activity relationship to further advance the η of DSSCs. To the best of our knowledge, there is no such a review interpreting the importance of molecules possessing IM-motifs for DSSC applications to date.
Collapse
|
2
|
Takeda A, Okai H, Watabe K, Iida H. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-Iodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. J Org Chem 2022; 87:10372-10376. [PMID: 35839306 DOI: 10.1021/acs.joc.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrated the oxidative cross-dehydrogenative coupling between amidines and chalcones catalyzed by flavin and iodine. The riboflavin-iodine catalytic system played multiple roles in substrate- and O2-activation, enabling the facile and atom-economical synthesis of tetra-substituted imidazoles in good yields (60-87%). This metal-free reaction consumed only 1 equiv of molecular oxygen and generated 2 equiv of environmentally benign H2O as the only byproduct.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kyoji Watabe
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
3
|
Zhang Y, Tang F, He X, Wang C, Kong L, Yang J, Ding A. Imidazole-based AIEgens for highly sensitive and selective detection of picric acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of imidazole-based AIEgens has been synthesized as fluorescent probes for specific recognition of picric acids over a variety of nitroaromatic compounds in aqueous media with high sensitivity.
Collapse
Affiliation(s)
- Yuzhu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, PR China
| | - Xuan He
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Chengyuan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Jiaxiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|