1
|
Liu YG, Zhong Z, Tang Y, Wang H, Vummaleti SVC, Peng X, Peng P, Zhang X, Chi YR. Carbene-catalyzed chirality-controlled site-selective acylation of saccharides. Nat Commun 2025; 16:54. [PMID: 39746955 PMCID: PMC11697312 DOI: 10.1038/s41467-024-55282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated. Our investigation reveals that this intriguing selectivity shift stems from a combination of factors, including chirality match/mismatch and inter- / intramolecular hydrogen bonding between the NHC catalyst and saccharide substrates. These findings provide valuable insights into catalyst design and reaction engineering, highlighting potential applications in glycoside analysis, such as fluorescent labelling, α/β identification, orthogonal reactions, and selective late-stage modifications.
Collapse
Affiliation(s)
- Ying-Guo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
- Pingyuan laboratory, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zetao Zhong
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuyang Tang
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongling Wang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sai Vikrama Chaitanya Vummaleti
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Xi Peng
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Peng Peng
- National Glycoengineering Research Centre, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Jinan, 250100, PR China
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Yu PH, Cheng YH, Chung SD, Chien CT. 1, 6-dilauroyl-D-fructofuranose ameliorates lipopolysaccharide-induced septic acute kidney injury via inhibiting caspase 1 mediated pyroptosis formation in rat. J Chin Med Assoc 2024; 87:1078-1089. [PMID: 39632381 DOI: 10.1097/jcma.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory state associated with acute kidney injury (AKI) and high mortality. However, sepsis-induced AKI cannot be effectively prevented or treated using current antimicrobial therapies and supportive measures. We explored the therapeutic effect of newly developed fructose esters on sepsis-induced AKI (S-AKI). METHODS We used the surface plasmon resonance technique and ultrasensitive chemiluminescence analyzer to characterize the lipopolysaccharide (LPS)/endotoxin binding activity and antioxidant capability of fructose esters. We assessed the extent of fructose ester gastrointestinal digestion using rat intestinal acetone powder. We examined the therapeutic effect of fructose esters on LPS-induced S-AKI by evaluating the blood and renal reactive oxygen species (ROS) amounts, caspase 1 mediated pyroptosis, inflammation, microcirculation, and renal dysfunction. RESULTS Our data showed that the fructose esters are not easily hydrolyzed by the rat intestinal acetone powder, suggesting their high stability in the gastrointestinal tract. 1,6-dilauroyl-D-fructofuranose (FDL) dose-dependently scavenged H2O2 and displayed a higher binding affinity to LPS compared to sialic acid and fructose did. LPS significantly enhanced caspase 1 mediated pyroptosis and increased leukocyte infiltration, blood and renal ROS amount, and blood urea nitrogen (BUN) and creatinine level, whereas FDL significantly depressed these LPS-enhanced parameters. In addition, the increased plasma inflammatory cytokines levels using LPS could be reduced by intravenous fructose ester FDL treatment. CONCLUSION Our data suggest that FDL, with its antioxidant activity against H2O2, can neutralize LPS toxicity using a high binding affinity, and attenuate S-AKI by inhibiting caspase 1 mediated pyroptosis, thereby ameliorating renal oxidative stress and dysfunction.
Collapse
Affiliation(s)
- Ping-Hsun Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Department of Emergency Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan, ROC
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Nursing and Healthcare Administration, College of Healthcare & Management, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
- General Education Center, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Li Z, Liu J, Fang Y, Chen H, Yang B, Wang Y. An efficient and high-water-content enzymatic esterification method for the synthesis of β-sitosterol conjugated linoleate via a sodium citrate-based three-liquid-phase system. Food Chem 2024; 458:140250. [PMID: 38964114 DOI: 10.1016/j.foodchem.2024.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Three-liquid-phase systems (TLPSs) are novel interfacial enzymatic reaction systems that have been successfully applied in many valuable reactions. However, these systems are suitable only for hydrolysis reactions and not for more widely used esterification reactions. Surprisingly, our recent research revealed that two water-insoluble substrates (β-sitosterol and conjugated linoleic acid) could be rapidly esterified in this system. The initial rate of the esterification reaction in the TLPS based on sodium citrate was enhanced by approximately 10-fold relative to that in a traditional water/n-hexane system. The special emulsion structure (S/W1/W2 emulsion) formed may be vital because it not only provides a larger reaction interface but also spontaneously generates a middle phase that might regulate water activity to facilitate esterification. Furthermore, the lipase-enriched phase could be reused at least 8 times without significant loss of catalytic efficiency. Therefore, this TLPS is an ideal enzymatic esterification platform for ester synthesis because it is efficient, convenient to use, and cost-effective.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiaqin Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yonghua Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Abdelaziz SA, Ahmed EM, Sadek M. Synthesis of homologous series of surfactants from renewable resources, structure-properties relationship, surface active performance, evaluation of their antimicrobial and anticancer potentialities. Sci Rep 2024; 14:13201. [PMID: 38851845 PMCID: PMC11162424 DOI: 10.1038/s41598-024-62905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.
Collapse
Affiliation(s)
- Shimaa A Abdelaziz
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt
| | - M Sadek
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| |
Collapse
|
6
|
Lin HC, Kidonakis M, Kaniraj JP, Kholomieiev I, Fridrich B, Stuart MCA, Minnaard AJ. The synthesis of fructose-based surfactants. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4715-4722. [PMID: 38654980 PMCID: PMC11033973 DOI: 10.1039/d4gc00399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
This study describes the synthesis of a new class of surfactants that is based on the bioderived building blocks fructose, fatty acid methyl esters (FAME), and hydroxy propionitrile (cyanoethanol, 3-HP). The synthesis is scalable, is carried out at ambient conditions, and does not require chromatography. The produced surfactants have excellent surfactant properties with critical micelle concentrations and Krafft points comparable to current glucose-based surfactants.
Collapse
Affiliation(s)
- Hung-Chien Lin
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marios Kidonakis
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - J P Kaniraj
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Ihor Kholomieiev
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Balint Fridrich
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- SustaCons Klauzal street 30 1072 Budapest Hungary
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
7
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
8
|
Park JY, Yu H, Charalampopoulos D, Park KM, Chang PS. Recent advances on erythorbyl fatty acid esters as multi-functional food emulsifiers. Food Chem 2024; 432:137242. [PMID: 37647709 DOI: 10.1016/j.foodchem.2023.137242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Over the past few decades, food scientists have investigated a wide range of emulsifiers to manufacture stable and safe emulsion-based food products. More recently, the development of emulsifiers with multi-functionality, which is the ability to have more than two functions, has been considered as a promising strategy for resolving rancidification and microbial contamination in emulsions. Erythorbyl fatty acid esters (EFEs) synthesized by enzymatic esterification of hydrophilic erythorbic acid and hydrophobic fatty acid have been proposed as multi-functional emulsifiers since they simultaneously exhibit amphiphilic, antioxidative, and antibacterial properties in both aqueous and emulsion systems. This review provides current knowledge about EFEs in terms of enzymatic synthesis and multi-functionality. All processes for synthesizing and identifying EFEs are discussed. Each functionality of EFEs and the proposed mechanism are described with analytical methodologies and experimental details. It would provide valuable insights into the development and application of a multi-functional emulsifier in food emulsion chemistry.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjong Yu
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Cheng W, Nian B. Computer-Aided Lipase Engineering for Improving Their Stability and Activity in the Food Industry: State of the Art. Molecules 2023; 28:5848. [PMID: 37570817 PMCID: PMC10421223 DOI: 10.3390/molecules28155848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
As some of the most widely used biocatalysts, lipases have exhibited extreme advantages in many processes, such as esterification, amidation, and transesterification reactions, which causes them to be widely used in food industrial production. However, natural lipases have drawbacks in terms of organic solvent resistance, thermostability, selectivity, etc., which limits some of their applications in the field of foods. In this systematic review, the application of lipases in various food processes was summarized. Moreover, the general structure of lipases is discussed in-depth, and the engineering strategies that can be used in lipase engineering are also summarized. The protocols of some classical methods are compared and discussed, which can provide some information about how to choose methods of lipase engineering. Thermostability engineering and solvent tolerance engineering are highlighted in this review, and the basic principles for improving thermostability and solvent tolerance are summarized. In the future, comput er-aided technology should be more emphasized in the investigation of the mechanisms of reactions catalyzed by lipases and guide the engineering of lipases. The engineering of lipase tunnels to improve the diffusion of substrates is also a promising prospect for further enhanced lipase activity and selectivity.
Collapse
Affiliation(s)
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China;
| |
Collapse
|
10
|
Teng Y, Lan P, White LV, Banwell MG. The useful biological properties of sucrose esters: Opportunities for the development of new functional foods. Crit Rev Food Sci Nutr 2023; 64:8018-8035. [PMID: 37068001 DOI: 10.1080/10408398.2023.2194438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sucrose esters have been deployed as surfactants in many food products since the 1950s. In addition to their useful physical characteristics, sucrose esters also have interesting biological properties that enhance their utility. This review critically examines the broad suite of biological activities that has been attributed to both synthetically-derived and naturally-occurring sucrose esters. These include insecticidal, molluscicidal, plant growth-regulating, anti-microbial, anti-tumor, anti-oxidant, anti-depressive, neuro-protective, anti-inflammatory and anti-plasmodial effects. In addition to providing a summary of the structure-activity profiles of sucrose esters, the various known mechanisms-of action of these compounds are also discussed. Furthermore, since sucrose esters are well-known surfactants, the potential to advantageously apply their industrially desirable physical characteristics in combination with their biological properties is considered. Recent advances in synthetic chemistry that have facilitated the deployment of biologically active sucrose esters as food additives are also described.
Collapse
Affiliation(s)
- Yinglai Teng
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Lv D, Wang M, He W, Wu J, Liu X, Guan Y. Ultra-small magnetic Candida antarctica lipase B nanoreactors for enzyme synthesis of bixin-maltitol ester. Food Chem 2023; 421:136132. [PMID: 37094396 DOI: 10.1016/j.foodchem.2023.136132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.
Collapse
Affiliation(s)
- Danyu Lv
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muyun Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanjun He
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieli Wu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyue Liu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongguang Guan
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Nagtode V, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability-Comparison, Applications, Market, and Future Prospects. ACS OMEGA 2023; 8:11674-11699. [PMID: 37033812 PMCID: PMC10077441 DOI: 10.1021/acsomega.3c00591] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Vaishnavi
S. Nagtode
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Clive Cardoza
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Suraj N. Mali
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Srushti M. Tambe
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pritish Roy
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Kartikeya Singh
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Antriksh Goel
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Purnima D. Amin
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Bapu R. Thorat
- Department
of Chemistry, Government College of Arts
and Science, Aurangabad, Maharashtra 431001, India
| | - Jorddy N. Cruz
- Laboratory
of Modeling and Computational Chemistry, Department of Biological
and Health Sciences, Federal University
of Amapá, Macapá 68902-280, Amapá, Brazil
| | - Amit P. Pratap
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
13
|
Semproli R, Simona Robescu M, Sangiorgio S, Pargoletti E, Bavaro T, Rabuffetti M, Cappelletti G, Speranza G, Ubiali D. From Lactose to Alkyl Galactoside Fatty Acid Esters as Non-Ionic Biosurfactants: A Two-Step Enzymatic Approach to Cheese Whey Valorization. Chempluschem 2023; 88:e202200331. [PMID: 36592040 DOI: 10.1002/cplu.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A library of alkyl galactosides was synthesized to provide the "polar head" of sugar fatty acid esters to be tested as non-ionic surfactants. The enzymatic transglycosylation of lactose resulted in alkyl β-D-galactopyranosides, whereas the Fischer glycosylation of galactose afforded isomeric mixtures of α- and β-galactopyranosides and α- and β-galactofuranosides. n-Butyl galactosides from either routes were enzymatically esterified with palmitic acid, used as the fatty acid "tail" of the surfactant, giving the corresponding n-butyl 6-O-palmitoyl-galactosides. Measurements of interfacial tension and emulsifying properties of n-butyl 6-O-palmitoyl-galactosides revealed that the esters of galactopyranosides are superior to those of galactofuranosides, and that the enantiopure n-butyl 6-O-palmitoyl-β-D-galactoside, prepared by the fully enzymatic route, leads to the most stable emulsion. These results pave the way to the use of lactose-rich cheese whey as raw material for the obtainment of bio-based surfactants.
Collapse
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Sara Sangiorgio
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Eleonora Pargoletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marco Rabuffetti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giuseppe Cappelletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| |
Collapse
|
14
|
Stubbs S, Yousaf S, Khan I. A review on the synthesis of bio-based surfactants using green chemistry principles. Daru 2022; 30:407-426. [PMID: 36190619 PMCID: PMC9715898 DOI: 10.1007/s40199-022-00450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES With increasing awareness of the potential adverse impact of conventional surfactants on the environment and human health, there is mounting interest in the development of bio-based surfactants (which are deemed to be safer, more affordable, are in abundance, are biodegradable, biocompatible and possess scalability, mildness and performance in formulation) in personal care products. METHOD A comprehensive literature review around alkyl polyglucosides (APGs) and sucrose esters (SEs) as bio-based surfactants, through the lens of the 12 green chemistry principles was conducted. An overview of the use of bio-based surfactants in personal care products was also provided. RESULTS Bio-based surfactants are derived primarily from natural sources (i.e. both the head and tail molecular group). One of the more common types of bio-based surfactants are those with carbohydrate head groups, where alkyl polyglucosides (APGs) and sucrose esters (SEs) lead this sub-category. As global regulations and user mandate for sustainability and safety increase, evidence to further support these bio-based surfactants as alternatives to their petrochemical counterparts is advantageous. Use of the green chemistry framework is a suitable way to do this. While many of the discussed principles are enforced industrially, others have only yet been applied at a laboratory scale or are not apparent in literature. CONCLUSION Many of the principles of green chemistry are currently used in the synthesis of APGs and SEs. These and other bio-based surfactants should, therefore, be considered suitable and sustainable alternatives to conventional surfactants. To further encourage the use of these novel surfactants, industry must make an effort to implement and improve the use of the remaining principles at a commercial level.
Collapse
Affiliation(s)
- Shea Stubbs
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
15
|
Karami M, Faraji AR, Saremnezhad S, Soltani M. Synthesis and characterization of a lactose-based biosurfactant by a novel nanodendritic catalyst and evaluating its efficacy as an emulsifier in a food emulsion system. RSC Adv 2022; 12:32280-32296. [PMID: 36425678 PMCID: PMC9647696 DOI: 10.1039/d2ra06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 10/28/2023] Open
Abstract
Nonionic lactose fatty acid esters are a class of synthetic biosurfactants with various uses in the food, pharmaceutical, personal care, and cosmetic industries. The objective of this research was the preparation and full characterization of a series of novel metallic encapsulated magnetic core/dendrimer shell composites as catalysts (CoII/MnII G2.0L1/2@SCMBNP) and their use in the chemo- and regioselective synthesis of a biosurfactant for the first time. Surface-active properties (such as contact angle (CA), surface tension (SFT), interfacial tension (IFT), critical micelle concentration (CMC), hydrophilic-lipophilic balance (HLB), foamability (FA) & foam stability (FS), emulsion ability (EmA) & emulsion stability (EmS), surface excess (Γ) and free energy of adsorption (ΔG) were also determined for all synthesized biosurfactants. In comparison to other works, these results suggested that the synthesized lactose fatty acid esters have potential application as synthetic emulsifiers featuring surface properties and are comparable with Ryoto sugar ester L-1695 (sucrose laurate) & Tween-20 (polysorbate 20) as industrial emulsifiers. The optimized conditions for biosurfactant syntheses are 8 days at 2 : 1 molar ratio of lactose sugar to lauric acid at 50 °C. Lactose ester as a biosurfactant exhibited a decrease of SFT & IFT and was able to stabilize a 20% soybean O/W emulsion. Furthermore, high conversion & yield, excellent chemo- and regioselectivity, and high operational stability over 5 runs were achieved for CoII/MnII-G2.0L1/2@SCMBNP, indicating the suitable efficiency of the catalytic process.
Collapse
Affiliation(s)
- Maryam Karami
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University Tehran Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Ali Reza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Solmaz Saremnezhad
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University Tehran Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University Tehran Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| |
Collapse
|
16
|
Rajput YN, Girase CD, Kedar RP, Deshpande PS, Kulkarni RD. Microwave‐assisted low‐cost synthesis of sucrose‐soya ester from vegetable oil refinery by‐product and its application in toothpaste formulation for oral hygiene. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yogeshsing N. Rajput
- Department of Oils, Oleochemicals and Surfactants Technology Institute of Chemical Technology Mumbai India
| | - Chetan D. Girase
- Department of Oils, Oleochemicals and Surfactants Technology Institute of Chemical Technology Mumbai India
| | - Rahul P. Kedar
- Department of Oils, Oleochemicals and Surfactants Technology Institute of Chemical Technology Mumbai India
| | - Priya S. Deshpande
- Department of Technical and Applied Chemistry Veermata Jijabai Technological Institute Mumbai India
| | - Ravindra D. Kulkarni
- Department of Oils, Oleochemicals and Surfactants Technology Institute of Chemical Technology Mumbai India
| |
Collapse
|
17
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
18
|
Kovalev DM, Kravchenko VS, Potemkin II. Nanofoam-like structure of surfactants in oil-water mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Recycling Food Waste and Saving Water: Optimization of the Fermentation Processes from Cheese Whey Permeate to Yeast Oil. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the aim of developing bioprocesses for waste valorization and a reduced water footprint, we optimized a two-step fermentation process that employs the oleaginous yeast Cutaneotrichosporon oleaginosus for the production of oil from liquid cheese whey permeate. For the first step, the addition of urea as a cost-effective nitrogen source allowed an increase in yeast biomass production. In the second step, a syrup from candied fruit processing, another food waste supplied as carbon feeding, triggered lipid accumulation. Consequently, yeast lipids were produced at a final concentration and productivity of 38 g/L and 0.57 g/L/h respectively, which are among the highest reported values. Through this strategy, based on the valorization of liquid food wastes (WP and mango syrup) and by recovering not only nutritional compounds but also the water necessary for yeast growth and lipid production, we addressed one of the main goals of the circular economy. In addition, we set up an accurate and fast-flow cytometer method to quantify the lipid content, avoiding the extraction step and the use of solvents. This can represent an analytical improvement to screening lipids in different yeast strains and to monitoring the process at the single-cell level.
Collapse
|
20
|
Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications-A Volatilomic Approach. Foods 2022; 11:foods11121731. [PMID: 35741929 PMCID: PMC9222233 DOI: 10.3390/foods11121731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
Coffee is one of the most popular beverages worldwide, whose production and consumption result in large amounts of waste, namely spent coffee grounds, constituting an important source of compounds for several industrial applications. This work focused on the establishment of the volatile fingerprint of five spent coffee grounds from different geographical origins using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS), as a strategy to identify volatile organic metabolites (VOMs) with potential application in the food industry as antioxidant, anti-inflammatory, and antiproliferative agents. One hundred eleven VOMs belonging to different chemical families were identified, of which 60 were found in all spent coffee grounds analyzed. Furanic compounds (34%), nitrogen compounds (30%), and esters (19%) contributed significant to the total volatile fingerprint. The data obtained suggest that spent coffee grounds have great potential to be used as raw material for different approaches in the food industry towards the development of new food ingredients or products for human consumption, in addition to pharmaceutical and cosmetic applications, namely as antioxidant (e.g., limonene, carvacrol), antimicrobial (e.g., pyrrole-2-carboxaldehyde, β-myrcene) and anti-inflammatory (e.g., furfural, 2-furanmethanol) agents, promoting their integral valorization within the circular bioeconomy concept.
Collapse
|
21
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|
22
|
Monday Abel Otache, Duru RU, Ozioma A, Abayeh JO. Catalytic Methods for the Synthesis of Sugar Esters. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Tiboni M, Elmowafy E, El-Derany MO, Benedetti S, Campana R, Verboni M, Potenza L, Palma F, Citterio B, Sisti M, Duranti A, Lucarini S, Soliman ME, Casettari L. A combination of sugar esters and chitosan to promote in vivo wound care. Int J Pharm 2022; 616:121508. [PMID: 35123002 DOI: 10.1016/j.ijpharm.2022.121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/β-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/β-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt; Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy.
| |
Collapse
|
24
|
Zhang S, Li Y, Hu L. Physical and biological evaluation of glucose hydrazones as biodegradable emulsifiers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas stutzeri. Int J Mol Sci 2022; 23:ijms23042239. [PMID: 35216354 PMCID: PMC8876684 DOI: 10.3390/ijms23042239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Rhamnolipids are becoming an important class of glycolipid biosurfactants. Herein, we describe for the first time the enzymatic synthesis of rhamnose fatty acid esters by the transesterification of rhamnose with fatty acid vinyl esters, using lipase from Pseudomonas stutzeri as a biocatalyst. The use of this lipase allows excellent catalytic activity in the synthesis of 4-O-acylrhamnose (99% conversion and full regioselectivity) after 3 h of reaction using tetrahydrofuran (THF) as the reaction media and an excess of vinyl laurate as the acyl donor. The role of reaction conditions, such as temperature, the substrates molar ratio, organic reaction medium and acyl donor chain-length, was studied. Optimum conditions were found using 35 °C, a molar ratio of 1:3 (rhamnose:acyldonor), solvents with a low logP value, and fatty acids with chain lengths from C4 to C18 as acyl donors. In hydrophilic solvents such as THF and acetone, conversions of up to 99–92% were achieved after 3 h of reaction. In a more sustainable solvent such as 2-methyl-THF (2-MeTHF), high conversions were also obtained (86%). Short and medium chain acyl donors (C4–C10) allowed maximum conversions after 3 h, and long chain acyl donors (C12–C18) required longer reactions (5 h) to get 99% conversions. Furthermore, scaled up reactions are feasible without losing catalytic action and regioselectivity. In order to explain enzyme regioselectivity and its ability to accommodate ester chains of different lengths, homology modelling, docking studies and molecular dynamic simulations were performed to explain the behaviour observed.
Collapse
|
26
|
Uchiyama H, Asai S, Nakanishi A, Tandia M, Kadota K, Tozuka Y. Applicability of transglycosylated stevia for oil-in-water submicron emulsions by high-pressure homogenization. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Sayaka Asai
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | | | | | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
27
|
Zieniuk B, Białecka-Florjańczyk E, Wierzchowska K, Fabiszewska A. Recent advances in the enzymatic synthesis of lipophilic antioxidant and antimicrobial compounds. World J Microbiol Biotechnol 2021; 38:11. [PMID: 34873650 PMCID: PMC8648661 DOI: 10.1007/s11274-021-03200-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Due to the increase in the consumption of highly processed food in developed countries, as well as, a growing number of foodborne diseases, exploration of new food additives is an issue focusing on scientific attention and industrial interest. Functional compounds with lipophilic properties are remarkably desirable due to the high susceptibility to the deterioration of lipid-rich food products. This paper in a comprehensive manner provides the current knowledge about the enzymatic synthesis of lipophilic components that could act as multifunctional food additives. The main goal of enzymatic lipophilization of compounds intentionally added to food is to make these substances soluble in lipids and/or to obtain environmentally friendly surfactants. Moreover, lipase-catalyzed syntheses could result in changes in the antioxidant and antimicrobial activities of phenolic compounds, carbohydrates, amino acids (oligopeptides), and carboxylic acids. The review describes also the implementation of a new trend in green chemistry, where apart from simple and uncomplicated chemical compounds, the modifications of multi-compound mixtures, such as phenolic extracts or essential oils have been carried out.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776, Warsaw, Poland.
| | - Ewa Białecka-Florjańczyk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776, Warsaw, Poland
| | - Katarzyna Wierzchowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776, Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776, Warsaw, Poland
| |
Collapse
|
28
|
Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters. Int J Biol Macromol 2021; 192:665-674. [PMID: 34656534 DOI: 10.1016/j.ijbiomac.2021.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Differently modified Lipozyme 435 (L435) (immobilized lipase B from Candida antarctica) preparations were used as biocatalysts in the esterification reaction to synthesize sugar fatty acid esters (SFAEs) from xylose (acyl acceptor) and lauric/palmitic acids (acyl donors) in methyl ethyl ketone (MEK) solvent. The L435 treatment with polyethyleneimine (PEI) (2; 25; and 750 KDa) prevented the enzyme leakage in the crude sugar ester reaction product. The 2 KDa PEI coating of this enzyme preparation produced the highest enzyme stability in MEK, buffer solutions (pHs 5 and 7), and methanol aqueous phosphate buffer at pH 7. Using an excess of the acyl donor (1:5 xylose: fatty acid molar ratio), high xylose conversions (70-84%) were obtained after 24 h-reaction using both, non-modified and PEI (2 KDa) coated L435, but the PEI treated biocatalyst afforded a higher xylose modification degree. After 5 reuse cycles with the L435 coated with PEI 2 KDa, the xylose conversions only decreased 10%, while with the non-treated biocatalyst they decreased by 37%. The formation of SFAEs was confirmed by mass spectrometry, which showed the presence of xylose mono-, di-, and triesters. They exhibited emulsion capacities close to that of a commercial sucrose monolaurate.
Collapse
|
29
|
Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts 2021. [DOI: 10.3390/catal11111357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.
Collapse
|
30
|
Sasayama T, Hiromori K, Takahashi A, Shibasaki-Kitakawa N. Process for continuous production of sugar esters of medium-chain fatty acid: Effect of residence time on productivity and scale-up design. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wang ZY, Gang HZ, He XL, He XJ, Bao XN, Ye RQ, Yang SZ, Li YC, Mu BZ. The middle phenyl-group at the hydrophobic tails of bio-based zwitterionic surfactants induced waved monolayers and more hydrated status on the surface of water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Abstract
Glycolipids have become an ecofriendly alternative to chemically obtained surfactants, mainly for the cosmetic, pharmaceutical, and food industries. However, the sustainable production of these compounds is still challenging, because: (i) water is a recognized inhibitor, (ii) multiphases make the use of cosolvent reaction medium necessary, and (iii) there are difficulties in finding a source for both starting materials. This study used sugars and lipids from peach palm fruit shells or model compounds as substrates to synthesize glycolipids on five different renewable deep eutectic solvents (Re-DES) alone or with a cosolvent system. Substrate conversions up to 24.84% (so far, the highest reported for this reaction on DES), showing (1) the non-precipitation of glucose in the solvent, (2) emulsification and (3) low viscosity (e.g., more favorable mass transfer) as the main limiting factors for these heterogeneous enzymatic processes. The resulting conversion was reached using a cosolvent system Re-DES:DMSO:t-butanol that was robust enough to allow conversions in the range 19–25%, using either model compounds or sugar and fatty acid extracts, with free or immobilized enzymes. Finally, the characterization of the in-house synthesized glycolipids by surface tension demonstrated their potential as biosurfactants, for instance, as an alternative to alcohol ethoxylates, industrially produced using less sustainable methods.
Collapse
|
33
|
Microbial inhibitory properties of maltodextrin fatty acid esters against food-related microorganisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Li Y, Pang J, Lou J, Sun W, Liu J, Wu B. Chemo‐ and Site‐Selective Fischer Esterification Catalyzed by B(C
6
F
5
)
3. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya‐Lan Li
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| | - Jin‐Yu Pang
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| | - Ji‐Cong Lou
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| | - Wen‐Wu Sun
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| | - Ji‐Kai Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| | - Bin Wu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 P. R. China
| |
Collapse
|
35
|
Lipozyme 435-Mediated Synthesis of Xylose Oleate in Methyl Ethyl Ketone. Molecules 2021; 26:molecules26113317. [PMID: 34205848 PMCID: PMC8197991 DOI: 10.3390/molecules26113317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.
Collapse
|
36
|
Ng SH, Mazlee MTFB, Heidelberg T. Biantennary Alkyl Triazole Glycosides by Double‐
click
‐Coupling for Water‐in‐Oil‐Emulsification. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Su Han Ng
- Chemistry Department, Faculty of Science University of Malaya Lembah Pantai Kuala Lumpur 50603 Malaysia
| | | | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science University of Malaya Lembah Pantai Kuala Lumpur 50603 Malaysia
| |
Collapse
|
37
|
Tabisz Ł, Piotrowicz Z, Dąbrowska M, Dobrowolska A, Czaczyk K, Nowak I, Łęska B. Sweet surfactants I: Fatty acid esters of sucralose. Food Chem 2021; 358:129827. [PMID: 33933977 DOI: 10.1016/j.foodchem.2021.129827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Surface active agents derived from the non-toxic sweetener sucralose and fatty acids of different chain length were synthesized. Obtained compounds were characterized chemically and with regard to their properties as emulsifying agents, antimicrobial preservatives and fat-soluble sweeteners. Results show that sucralose-fatty acid esters are possible multi-purpose additives, compatible with both cosmetic and edible emulsions, as well as purely oil-based, waterless formulations. Their relative effectiveness in those applications varies, and is highly dependent on the fatty acid chain length, with hydrophobic/hydrophilic character strongly impacting both emulsifying and antimicrobial properties. While the structural differences between sucrose and sucralose proved to be enough to push all of the newly synthesized compounds out of the detergent/solubilizer category of surfactants, the retention of the substrate's high sweetness is an indication that non-bitter compounds with washing capabilities are possible to obtain.
Collapse
Affiliation(s)
- Łukasz Tabisz
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Zuzanna Piotrowicz
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marta Dąbrowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Anna Dobrowolska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
38
|
Jocquel C, Muzard M, Plantier-Royon R, Rémond C. An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters From Wheat Bran. Front Bioeng Biotechnol 2021; 9:647442. [PMID: 33898404 PMCID: PMC8058420 DOI: 10.3389/fbioe.2021.647442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alkyl glycosides and sugars esters are non-ionic surfactants of interest for various applications (cosmetics, food, detergency,…). In the present study, xylans and cellulose from wheat bran were enzymatically converted into pentyl xylosides and glucose and xylose laurate monoesters. Transglycosylation reaction catalyzed by the commercial enzymatic cocktail Cellic Ctec2 in the presence of pentanol led to the synthesis of pentyl β-D-xylosides from DP1 to 3 with an overall yield of 520 mg/g of xylans present in wheat bran. Enzymatic hydrolysis of wheat bran with Cellic Ctec2 and subsequent acylation of the recovered D-glucose and D-xylose catalyzed by the commercial lipase N435 in the presence of lauric acid or methyl laurate produced one D-glucose laurate monoester and one D-xylose laurate monoester. An integrated approach combining transglycosylation and (trans)esterification reactions was successfully developed to produce both pentyl xylosides and D-glucose and D-xylose laurate esters from the same batch of wheat bran.
Collapse
Affiliation(s)
- Chloé Jocquel
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| |
Collapse
|
39
|
Enzymatic Synthesis of Glucose Fatty Acid Esters Using SCOs as Acyl Group-Donors and Their Biological Activities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sugar fatty acid esters, especially glucose fatty acid esters (GEs), have broad applications in food, cosmetic and pharmaceutical industries. In this research, the fatty acid moieties derived from polyunsaturated fatty acids containing single-cell oils (SCOs) (i.e., those produced from Cunninghamella echinulata, Umbelopsis isabellina and Nannochloropsis gaditana, as well as from olive oil and an eicosapentaenoic acid (EPA) concentrate) were converted into GEs by enzymatic synthesis, using lipases as biocatalysts. The GE synthesis was monitored using thin-layer chromatography, FTIR and in situ NMR. It was found that GE synthesis carried out using immobilized Candida antarctica B lipase was very effective, reaching total conversion of reactants. It was shown that EPA-GEs were very effective against several pathogenic bacteria and their activity can be attributed to their high EPA content. Furthermore, C. echinulata-GEs were more effective against pathogens compared with U. isabellina-GEs, probably due to the presence of gamma linolenic acid (GLA) in the lipids of C. echinulata, which is known for its antimicrobial activity, in higher concentrations. C. echinulata-GEs also showed strong insecticidal activity against Aedes aegypti larvae, followed by EPA-GEs, olive oil-GEs and N. gaditana-GEs. All synthesized GEs induced apoptosis of the SKOV-3 ovarian cancer cell line, with the apoptotic rate increasing significantly after 48 h. A higher percentage of apoptosis was observed in the cells treated with EPA-GEs, followed by C. echinulata-GEs, U. isabellina-GEs and olive oil-GEs. We conclude that SCOs can be used in the synthesis of GEs with interesting biological properties.
Collapse
|
40
|
A Review on Recent Progress of Glycan-Based Surfactant Micelles as Nanoreactor Systems for Chemical Synthesis Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.
Collapse
|
41
|
Ishak KA, Fadzil MFA, Annuar MSM. Phase inversion emulsification of different vegetable oils using surfactant mixture of cremophor EL and lipase-synthesized glucose monooleate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
MATİN MM, ISLAM N, SİDDİKA A, BHATTACHARJEE SC. Regioselective Synthesis of Some Rhamnopyranoside Esters for PASS Predication, and ADMET Studies. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.829658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Gonçalves MCP, Romanelli JP, Guimarães JR, Vieira AC, de Azevedo BP, Tardioli PW. Reviewing research on the synthesis of CALB-catalyzed sugar esters incorporating systematic mapping principles. Crit Rev Biotechnol 2021; 41:865-878. [PMID: 33645353 DOI: 10.1080/07388551.2021.1888071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rigorous evidence reviews must follow specific guidelines designed to improve transparency, reproducibility, and to minimize biases to which traditional reviews are susceptible. While evidence synthesis methods, such as systematic reviews and maps, have been used in several research fields, the majority of reviews published in the realm of chemical engineering are nonsystematic. In this study, we incorporated principles of systematic mapping to conduct a literature review covering research on the synthesis of sugar fatty acid esters (SFAE) with Candida antarctica lipase B (CALB). Our results showed that the simple monosaccharides were the most cited sugars among studies we conducted. The direct use of renewable raw materials and frequently available resources to produce alternative sugar esters (SE) was scarcely reported in our data set. We found that free fatty acids (FFA) were the most commonly cited acyl donors amongst all publications, with lauric, oleic, and palmitic acids accounting for ∼43% of the occurrences. Tertiary alcohols (ter-butyl alcohol (T-but) and 2-methyl-2-butanol (2M2B)) and ionic liquids were the most used solvents to synthesize SE. The co-occurence analysis of keywords involving solvent terms showed that most of the papers evaluated different solvents as reaction media (mostly in the form of a bisolvent system), also investigating the impact of their choice on sugar ester productivities. Given the potential of reviews informing us of research decisions, this article reveals trends and spaces across CALB-catalyzed SE synthesis research, in addition to introducing a new methodological perspective for developing reviews in the field of chemical engineering.
Collapse
Affiliation(s)
| | - João Paulo Romanelli
- Laboratory of Ecology and Forest Restoration (LERF), Forest Sciences Department, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
| | - José Renato Guimarães
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ana Carolina Vieira
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Bruna Pereira de Azevedo
- Laboratory of Ecology and Forest Restoration (LERF), Forest Sciences Department, University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
| | - Paulo Waldir Tardioli
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
44
|
Martinez‐Garcia M, Dejonghe W, Cauwenberghs L, Maesen M, Vanbroekhoven K, Satyawali Y. Enzymatic Synthesis of Glucose‐ and Xylose Laurate Esters Using Different Acyl Donors, Higher Substrate Concentrations, and Membrane Assisted Solvent Recovery. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marta Martinez‐Garcia
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| | - Winnie Dejonghe
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| | - Lieve Cauwenberghs
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| | - Miranda Maesen
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| | - Karolien Vanbroekhoven
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| | - Yamini Satyawali
- Separation and Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 Mol 2400 Belgium
| |
Collapse
|
45
|
Sasayama T, Kanezawa A, Hiromori K, Takahashi A, Shibasaki-Kitakawa N. Controlling reaction selectivity for sugar fatty acid ester synthesis by using resins with different basicities. Food Chem 2020; 340:128100. [PMID: 33059268 DOI: 10.1016/j.foodchem.2020.128100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022]
Abstract
A strongly basic ion-exchange resin catalyst was reported to exhibit a high catalytic activity in transesterification to produce a bio-based surfactant, sugar ester under mild condition. However, the side-reactions to decompose the reactant and the product were found to occur. This study was aimed to improve the selectivity of sugar ester synthesis by newly focusing on the basicity of the resin. A weakly basic resin (Diaion WA20) with a lower mass transfer resistance suppressed the decompositions while maintaining synthesis rate. Controlling molar ratio of the reactants in the intraparticle reaction field also increased the reaction selectivity, 72.1% and product yield, 57.5%. Both values were drastically increased compared to the reported values with the strongly basic resin (selectivity 50.9%, yield 14.3%). This is the first knowledge to show a high catalytic activity of weakly basic resin. These results suggest that a more efficient continuous production process would be possible.
Collapse
Affiliation(s)
- Tomone Sasayama
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Ayumu Kanezawa
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Takahashi
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Naomi Shibasaki-Kitakawa
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
46
|
Gérard D, Méline T, Muzard M, Deleu M, Plantier-Royon R, Rémond C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr Res 2020; 495:108090. [PMID: 32807358 DOI: 10.1016/j.carres.2020.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023]
Abstract
Lipase-catalyzed synthesis of xylo-oligosaccharides esters from pure xylobiose, xylotriose and xylotetraose in the presence of vinyl laurate was investigated. The influence of different experimental parameters such as the loading of lipase, the reaction duration or the use of a co-solvent was studied and the reaction conditions were optimized with xylobiose. Under the best conditions, a regioselective esterification occurred to yield a monoester with the acyl chain at the OH-4 of the xylose unit at the non-reducing end. Surface-active properties of these pure xylo-oligosaccharides fatty esters have been evaluated. They display interesting surfactant activities that differ according to the degree of polymerization (DP) of the glycone moiety.
Collapse
Affiliation(s)
- D Gérard
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - T Méline
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - M Deleu
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire de Biophysique Moléculaire Aux Interfaces, 2 Passage des Déportés, B-5030, Gembloux, Belgium
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - C Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France.
| |
Collapse
|
47
|
Teng Y, Stewart SG, Hai YW, Li X, Banwell MG, Lan P. Sucrose fatty acid esters: synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit Rev Food Sci Nutr 2020; 61:3297-3317. [PMID: 32746632 DOI: 10.1080/10408398.2020.1798346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The notable physical and chemical properties of sucrose fatty acid esters have prompted their use in the chemical industry, especially as surfactants, since 1939. Recently, their now well-recognized value as nutraceuticals and as additives in cosmetics has significantly increased demand for ready access to them. As such a review of current methods for the preparation of sucrose fatty acid esters by both chemical and enzymatic means is warranted and is presented here together with an account of the historical development of these compounds as surfactants (emulsifiers). The somewhat belated recognition of the antimicrobial, anticancer and insecticidal activities of sucrose esters is also discussed along with a commentary on their structure-property profiles.
Collapse
Affiliation(s)
- Yinglai Teng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia (M310), Crawley, Western Australia, Australia.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| | - Yao-Wen Hai
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Xuan Li
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
49
|
Coelho ALS, Orlandelli RC. Immobilized microbial lipases in the food industry: a systematic literature review. Crit Rev Food Sci Nutr 2020; 61:1689-1703. [PMID: 32423294 DOI: 10.1080/10408398.2020.1764489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several studies describe the immobilization of microbial lipases aiming to evaluate the mechanical/thermal stability of the support/enzyme system, the appropriate method for immobilization, acid and alkaline stability, tolerance to organic solvents and specificity of fatty acids. However, literature reviews focus on application of enzyme/support system in food technology remains scarce. This current systematic literature review aimed to identify, evaluate and interpret available and relevant researches addressing the type of support and immobilization techniques employed over lipases, in order to obtain products for food industry. Fourteen selected articles were used to structure the systematic review, in which the discussion was based on six main groups: (i) synthesis/enrichment of polyunsaturated fatty acids; (ii) synthesis of structured lipids; (iii) flavors and food coloring; (iv) additives, antioxidants and antimicrobials; (v) synthesis of phytosterol esters and (vi) synthesis of sugar esters. In general, the studies discussed the synthesis of the enzyme/support system and the characteristics: surface area, mass transfer resistance, activity, stability (pH and temperature), and recyclability. Each immobilization technique is applicable for a specific production, depending mainly on the sensitivity and cost of the process.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ravely Casarotti Orlandelli
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Center of Humanities and Education Sciences, College of Biological Sciences, Universidade Estadual do Paraná, Paranavaí, PR, Brazil
| |
Collapse
|
50
|
Ji S, Jia C, Cao D, Li S, Zhang X. Direct and selective enzymatic synthesis of trehalose unsaturated fatty acid diesters and evaluation of foaming and emulsifying properties. Enzyme Microb Technol 2020; 136:109516. [PMID: 32331720 DOI: 10.1016/j.enzmictec.2020.109516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Trehalose diesters are Gemini-type surfactants that might have better surface activity than conventional surfactants. A one-step method for the preparation of trehalose unsaturated fatty acid diesters has been successfully developed. The yield of trehalose diester of different unsaturated fatty acids was between 78 % and 88 % under optimal conditions: 25 mmol/L trehalose, 100 mmol/L unsaturated fatty acid, 60 g/L 3 Å molecular sieves and 20 g/L lipase at 150 rpm and 50 °C for 42 h in 15 mL of acetone. Additionally, trehalose diester was the sole product obtained with Novozym 435 in acetone. The chemical structures of 6,6'-di-O-oleoyltrehalose, 6,6'-di-O-linoleoyltrehalose, 6,6'-di-O-eicosenoyltrehalose and 6,6'-di-O-erucoyltrehalose were confirmed by FTIR, MS and NMR. Moreover, the hydrophile-lipophile balance (HLB) values, foaming properties and emulsifying properties of trehalose diesters were assessed, showing the potentials of these diesters as naturally derived surfactants for the food industry.
Collapse
Affiliation(s)
- Suping Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Chengsheng Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Dandan Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Shusheng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|