1
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
2
|
Fang S, Tang H, Wang M, Xu Z, Li N. The antifouling and separation performance of an ultrafiltration membrane derived from a novel amphiphilic copolymer containing a crown ether. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Kertész S, Gulyás NS, Al-Tayawi AN, Huszár G, Lennert JR, Csanádi J, Beszédes S, Hodúr C, Szabó T, László Z. Modeling of Organic Fouling in an Ultrafiltration Cell Using Different Three-Dimensional Printed Turbulence Promoters. MEMBRANES 2023; 13:membranes13030262. [PMID: 36984649 PMCID: PMC10056043 DOI: 10.3390/membranes13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
Designing turbulence promoters with optimal geometry and using them for ultrafiltration systems has been a key challenge in mitigating membrane fouling. In this study, six different turbulence promoters were created using three-dimensional printing technology and applied in dead-end ultrafiltration. Three-dimensional-printed (3DP) turbulence promoter configurations were integrated into a classical batch ultrafiltration cell. The effects of these configurations and the stirring speeds on the permeate filtration flux, organic rejections, and membrane resistances were investigated. The fouling control efficiency of the 3DP promoters was evaluated using two polyethersulfone membranes in a stirred ultrafiltration cell with model dairy wastewater. The Hermia and resistance-in-series models were studied to further investigate the membrane fouling mechanism. Of the Hermia models, the cake layer model best described the fouling in this membrane filtration system. It can be concluded that the 3DP turbulence promoters, combined with intense mechanical stirring, show great promise in terms of permeate flux enhancement and membrane fouling mitigation. Using a well-designed 3DP turbulence promoter improves the hydrodynamic flow conditions on the surface of the stirred membrane separation cells based on computational fluid dynamics modeling. Therefore, the factors effecting the fabrication of 3DP turbulence promoters are important, and further research should be devoted to revealing them.
Collapse
Affiliation(s)
- Szabolcs Kertész
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
- Correspondence:
| | - Nikolett Sz. Gulyás
- Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos krt. 103, H-6725 Szeged, Hungary
| | - Aws N. Al-Tayawi
- Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos krt. 103, H-6725 Szeged, Hungary
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér. 1, H-6720 Szeged, Hungary
| | - Gabriella Huszár
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
| | - József Richárd Lennert
- Faculty of Automotive Engineering, Széchenyi István University, Egyetem tér. 1, H-9026 Győr, Hungary
| | - József Csanádi
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
| | - Sándor Beszédes
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
| | - Tamás Szabó
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér. 1, H-6720 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Al-Amshawee SKA, Yunus MYBM. Electrodialysis desalination: The impact of solution flowrate (or Reynolds number) on fluid dynamics throughout membrane spacers. ENVIRONMENTAL RESEARCH 2023; 219:115115. [PMID: 36574794 DOI: 10.1016/j.envres.2022.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.
Collapse
Affiliation(s)
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Pahang, Malaysia
| |
Collapse
|
5
|
Unar IN, Maitlo G, Abro M, Ali I, Laghari AQ, Solangi ZA, Koondhar NA, Ansari NM, Kim JO. Modeling and simulation of juice clarifier using computational fluid dynamics for enhanced sugar quality. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Porozhnyy MV, Kozmai AE, Mareev AA, Gil VV. Theoretical and Experimental Study of Neutralization Dialysis of Phenylalanine–Mineral Salt Equimolar Mixture of Different Concentrations. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Fikri S, Lessard MH, Perreault V, Doyen A, Labrie S. Candida krusei is the major contaminant of ultrafiltration and reverse osmosis membranes used for cranberry juice production. Food Microbiol 2022; 109:104146. [DOI: 10.1016/j.fm.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
8
|
Yadav D, Karki S, Ingole PG. Nanofiltration (NF) Membrane Processing in the Food Industry. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhu H, Chen Z, Qin L, Zhang L, Zhou J. Simulated preparation and hydration property of a new-generation zwitterionic modified PVDF membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Divya S, Oh TH. Polymer Nanocomposite Membrane for Wastewater Treatment: A Critical Review. Polymers (Basel) 2022; 14:polym14091732. [PMID: 35566901 PMCID: PMC9100919 DOI: 10.3390/polym14091732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such membranes have limited applications. Nanocomposite membranes, which are formed by adding nanofillers to polymeric membrane matrices, can enhance the filtration process. Considerable attention has been given to nanofillers, which include carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined the current status of membrane technologies for water filtration, polymeric nanocomposite membranes, and their applications. Additionally, we highlight the challenges faced in water treatment in developing countries.
Collapse
|
11
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Zhou B, Huang F, Gao C, Xue L. The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Malliaroudaki MI, Watson NJ, Ferrari R, Nchari LN, Gomes RL. Energy management for a net zero dairy supply chain under climate change. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Scale-Up and Long-Term Study of Electrodialysis with Ultrafiltration Membrane for the Separation of a Herring Milt Hydrolysate. MEMBRANES 2021; 11:membranes11080558. [PMID: 34436322 PMCID: PMC8399119 DOI: 10.3390/membranes11080558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
Electrodialysis with ultrafiltration membrane (EDUF) was selected to separate a herring milt hydrolysate (HMH) in a scale-up and long-term study for the recovery of bioactive peptides. The scale-up was performed to maximise peptide recovery by placing a total membrane area of 0.08 m2 for each anionic and cationic compartment. Twelve consecutive runs were carried out, for a total of 69 h, with minimal salt solution cleaning in between experiments. The final peptide migration rate showed that cationic peptides had a higher average migration rate (5.2 ± 0.8 g/m2·h), compared to anionic peptides (4.7 ± 1.1 g/m2·h). Migration was also selective according to peptide identifications and molecular mass distribution where only small molecular weights were found (<1000 Da) in both recovery compartments. The areal system resistance slightly decreased during each run and the averaged values were stable in between experiments since they were all found in the 95% confidence interval. In addition, total relative energy consumption was quite consistent with an average value of 39.95 ± 6.47 Wh/g all along the 12 consecutive runs. Finally, according to membrane characterization, there was no visual fouling on the different membranes present in the EDUF cell after 69 h of treatment. This may be due to the salt cleaning in between experiments which allowed removal of peptides from the membranes, thus allowing recovering initial system working parameters at the beginning of each run. The entire process was revealed to be very consistent and repeatable in terms of peptide migration, global system resistance, and energy consumption. To the best of our knowledge, this is the first time such EDUF conditions (membrane surface, duration, and minimal salt cleaning between experiments) are being tested on a complex hydrolysate.
Collapse
|
15
|
Yin J, Tang H, Xu Z, Li N. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Decarbonisation of food manufacturing by the electrification of heat: A review of developments, technology options and future directions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
The Challenge of Cleaning Woven Filter Cloth in the Beverage Industry—Wash Jets as an Appropriate Solution. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBeverage production requires many different and complex unit operations. One crucial procedural step is filtration. Typical filters are filter presses, candle filters, membrane filters, belt filters, and drum filters, which require considerable hygienic precaution and the application of appropriate cleaning concepts. In the last decades, the hygienic design has become a central design feature of equipment in the beverage and food industries. Today, also correspondent concepts regarding filter cloth increasingly come to the fore. However, filter cloth cleaning is rapidly facing limitations. Complex filter geometries originating from different gauzes and sensitive polymeric materials hinder efficient cleaning. Additionally, extensive biological residues adhering to the filter surface increase the challenge of cleaning. The goal of this paper is to outline the cleaning of woven filter cloths systematically with a particular focus on beverages and correspondent biophysical interactions between filter and residue. Based on these elemental cleaning limits of filter cloths, this paper focuses mainly on jet cleaning as one of the most appropriate cleaning methods. The flow-mechanical properties are discussed in detail since these are precisely the parameters that, on the one hand, describe the understanding of the cleaning process and, on the other hand, show how a wash jet can be adjusted precisely. In contrast to conventional cleaning techniques, such wash jets are expeditious to adapt and offer the best prerequisites to enable demand-oriented and optimized cleaning concepts. The latest research and approaches are enhancing jet efficiency and highlight their potentials for future process strategies.
Collapse
|
18
|
Mining and fine-tuning sugar uptake system for titer improvement of milbemycins in Streptomyces bingchenggensis. Synth Syst Biotechnol 2020; 5:214-221. [PMID: 32695892 PMCID: PMC7360889 DOI: 10.1016/j.synbio.2020.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022] Open
Abstract
Dramatic decrease of sugar uptake is a general phenomenon in Streptomyces at stationary phase, when antibiotics are extensively produced. Milbemycins produced by Streptomyces bingchenggensis are a group of valuable macrolide biopesticides, while the low yield and titer impede their broad applications in agricultural field. Considering that inadequate sugar uptake generally hinders titer improvement of desired products, we mined the underlying sugar uptake systems and fine-tuned their expression in this work. First, we screened the candidates at both genomic and transcriptomic level in S. bingchenggensis. Then, two ATP-binding cassette transporters named TP2 and TP5 were characterized to improve milbemycin titer and yield significantly. Next, the appropriate native temporal promoters were selected and used to tune the expression of TP2 and TP5, resulting in a maximal milbemycin A3/A4 titer increase by 36.9% to 3321 mg/L. Finally, TP2 and TP5 were broadly fine-tuned in another two macrolide biopesticide producers Streptomyces avermitilis and Streptomyces cyaneogriseus, leading to a maximal titer improvement of 34.1% and 52.6% for avermectin B1a and nemadectin, respectively. This work provides useful transporter tools and corresponding engineering strategy for Streptomyces.
Collapse
|
19
|
Recent advances and perspectives of ultrasound assisted membrane food processing. Food Res Int 2020; 133:109163. [PMID: 32466900 DOI: 10.1016/j.foodres.2020.109163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 01/17/2023]
Abstract
Power ultrasound (US) transmits substantial amounts of small mechanical movements serving for particle detaching in membrane filtrations. This topic has been reviewed in recent years mainly focused on the mechanisms by which the flux is improved under specific processing conditions. US also been shown to improve food quality by changing physical properties and modifying the activity of enzymes and microorganisms. Surprisingly, limited information exists regarding on how the application of US results in terms of process and quality during membrane filtration of complex matrices such as liquid foods. This review highlights the recent advances in the use of US in membrane filtration processes focused in the manufacturing of foodstuffs and food ingredients, and perspectives of novel hybrid membrane-US systems that may be quite interesting for this field. The application of US in food membrane processing increases the flux, but the lack of standardization regarding to experimental conditions, make suitable comparisons impossible. In this sense, careful attention must be paid regarding to the ultrasonic intensity (UI), the membrane configuration and type of transducers and volume of the treated solution. Dairy products are the most studied application of US membrane food processing, but research has been mainly focused on flux enhancement; hitherto there have been no reports of how operational variables in these processes affect critical aspects such as quality and food safety. Also, studies performed at industrial scale and economical assessments are still missing. Application of US combined with membrane operations such as reverse osmosis (RO), forward osmosis (FO) and enzyme membrane bioreactors (EMBR) may result interesting for the production of value-added foods. In the perspective of the authors, the stagnation of the development of acoustic filtration systems in food is due more to a prejudice on this subject, rather than actual impedance due to the lack of technological development of transducers. This later has shown important advances in the last years making them suitable for tailor made applications, thus opening several research opportunities to the food engineering not yet explored.
Collapse
|
20
|
Zhang C, Huang R, Tang H, Zhang Z, Xu Z, Li N. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Maggay IV, Yeh TH, Venault A, Hsu CH, Dizon GV, Chang Y. Tuning the molecular design of random copolymers for enhancing the biofouling mitigation of membrane materials. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Sun J, Hu X, Huang Y, Peng R, Luo Y, Yu P. 1,3‐Diamino‐2‐propanol or 2‐aminoethanethiol modified active layer of thin‐film composite forward osmosis membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.47923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajin Sun
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xuhui Hu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yangbo Huang
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ruichao Peng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yunbai Luo
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ping Yu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
23
|
Nevakshenova EE, Sarapulova VV, Nikonenko VV, Pismenskaya ND. Application of Sodium Chloride Solutions to Regeneration of Anion-Exchange Membranes Used for Improving Grape Juices and Wines. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chowdhury R, Ren T, Shankla M, Decker K, Grisewood M, Prabhakar J, Baker C, Golbeck JH, Aksimentiev A, Kumar M, Maranas CD. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nat Commun 2018; 9:3661. [PMID: 30202038 PMCID: PMC6131167 DOI: 10.1038/s41467-018-06097-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022] Open
Abstract
Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to implement in synthetic industrial membranes and have modest selectivity without tunable selectivity. Here we present PoreDesigner, a design workflow to redesign the robust beta-barrel Outer Membrane Protein F as a scaffold to access three specific pore designs that exclude solutes larger than sucrose (>360 Da), glucose (>180 Da), and salt (>58 Da) respectively. PoreDesigner also enables us to design any specified pore size (spanning 3-10 Å), engineer its pore profile, and chemistry. These redesigned pores may be ideal for conducting sub-nm aqueous separations with permeabilities exceeding those of classical biological water channels, aquaporins, by more than an order of magnitude at over 10 billion water molecules per channel per second.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Manish Shankla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karl Decker
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew Grisewood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jeevan Prabhakar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carol Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
25
|
Xu Z, Liao J, Tang H, Efome JE, Li N. Preparation and antifouling property improvement of Tröger's base polymer ultrafiltration membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Xu Z, Liao J, Tang H, Li N. Antifouling polysulfone ultrafiltration membranes with pendent sulfonamide groups. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.064] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Martín J, Díaz-Montaña EJ, Asuero AG. Recovery of Anthocyanins Using Membrane Technologies: A Review. Crit Rev Anal Chem 2018; 48:143-175. [PMID: 29185791 DOI: 10.1080/10408347.2017.1411249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthocyanins are naturally occurring polyphenolic compounds and give many flowers, fruits and vegetable their orange, red, purple and blue colors. Besides their color attributes, anthocyanins have received much attention in recent years due to the growing evidence of their antioxidant capacity and health benefits on humans. However, these compounds usually occur in low concentrations in mixtures of complex matrices, and therefore large-scale harvesting is needed to obtain sufficient amounts for their practical usage. Effective fractionation or separation technologies are therefore essential for the screening and production of these bioactive compounds. In this context, membrane technologies have become popular due to their operational simplicity, the capacity to achieve good simultaneous separation/pre-concentration and matrix reduction with lower temperature and lower operating cost in comparison to other sample preparation methods. Membrane fractionation is based on the molecular or particle sizes (pressure-driven processes), on their charge (electrically driven processes) or are dependent on both size and charge. Other non-pressure-driven membrane processes (osmotic pressure and vapor pressure-driven) have been developed in recent years and employed as alternatives for the separation or fractionation of bioactive compounds at ambient conditions without product deterioration. These technologies are applied either individually or in combination as an integrated membrane system to meet the different requirements for the separation of bioactive compounds. The first section of this review examines the basic principles of membrane processes, including the different types of membranes, their structure, morphology and geometry. The most frequently used techniques are also discussed. Last, the specific application of these technologies for the separation, purification and concentration of phenolic compounds, with special emphasis on anthocyanins, are also provided.
Collapse
Affiliation(s)
- Julia Martín
- a Department of Analytical Chemistry , Escuela Politécnica Superior, University of Seville , Seville , Spain
| | | | - Agustin G Asuero
- b Department of Analytical Chemistry, Faculty of Pharmacy , University of Seville , Seville , Spain
| |
Collapse
|
28
|
Huang L, Pan XR, Wang YZ, Li CX, Chen CB, Zhao QB, Mu Y, Yu HQ, Li WW. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions. BIORESOURCE TECHNOLOGY 2018; 248:148-155. [PMID: 28709885 DOI: 10.1016/j.biortech.2017.06.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater.
Collapse
Affiliation(s)
- Liang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Ya-Zhou Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Xuan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Chang-Bin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China.
| |
Collapse
|
29
|
Ghimpusan M, Nechifor G, Nechifor AC, Dima SO, Passeri P. Case studies on the physical-chemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:811-816. [PMID: 27474707 DOI: 10.1016/j.jenvman.2016.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/05/2023]
Abstract
The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH4+, NO2-, NO3-) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation.
Collapse
Affiliation(s)
- Marieta Ghimpusan
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials' Science, 1-7 Gheorghe Polizu, 011061, Bucharest, Romania.
| | - Gheorghe Nechifor
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials' Science, 1-7 Gheorghe Polizu, 011061, Bucharest, Romania
| | - Aurelia-Cristina Nechifor
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials' Science, 1-7 Gheorghe Polizu, 011061, Bucharest, Romania
| | - Stefan-Ovidiu Dima
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials' Science, 1-7 Gheorghe Polizu, 011061, Bucharest, Romania
| | - Piero Passeri
- G.O.S.T. Srl, 31 Via Romana, 06081, Assisi, PG, Italy
| |
Collapse
|
30
|
Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Tsai JH, Macedonio F, Drioli E, Giorno L, Chou CY, Hu FC, Li CL, Chuang CJ, Tung KL. Membrane-based zero liquid discharge: Myth or reality? J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res Int 2017; 100:19-30. [DOI: 10.1016/j.foodres.2017.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/19/2022]
|
33
|
|
34
|
Chen TH, Huang YH. Dehydration of diethylene glycol using a vacuum membrane distillation process. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|