1
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
2
|
Jiang Z, Wang Y, Bai S, Bai C, Tu Z, Li H, Guo P, Liao T, Qiu L. The viable but non-culturable (VBNC) status of Shewanella putrefaciens (S. putrefaciens) with thermosonication (TS) treatment. ULTRASONICS SONOCHEMISTRY 2024; 109:107008. [PMID: 39096846 PMCID: PMC11345692 DOI: 10.1016/j.ultsonch.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Although thermosonication (TS) treatment has been widely used in food sterilization, the viable but non-culturable (VBNC) of bacteria with TS treatment has still concerned potential food safety and public health. The molecular mechanism of VBNC status of bacteria with TS treatment is not clearly known. Therefore, in this study, we used Shewanella putrefaciens, which was a common putrefactive bacteria in aquatic products, to study the VBNC state of bacteria with TS treatment. Firstly, our results revealed that S. putrefaciens still could enter the VBNC state after TS treatments: 50 kHz, 300 W, 30 min ultrasonic treatment and 70 °C heating; Subsequently, we found the VBNC state of S. putrefaciens can resist the damage of TS treatment, such as cell wall break, DNA degradation, etc; Finally, four-dimensional data-independent acquisition-based proteomics showed that under VBNC state, S. putrefaciens upregulated functional proteins to resist TS treatment, such as: ribosomal proteins to accelerate the synthesis of stress proteins to counteract TS treatments, ornithine decarboxylase SpeF and MraY to repair TS treatment-induced damage, etc. Meanwhile, S. putrefaciens downregulates metabolic and transport functional proteins such as dehydrogenase to reduce the metabolism. Importantly, among those proteins, the ribosomal transcriptional regulatory protein family, such as rpsB, etc, may be the key proteins for S. putrefaciens entering VBNC state. This finding can provide some new strategies for preventing VBNC status of bacteria with TS treatment, such as: inhibition of key proteins, etc.
Collapse
Affiliation(s)
- Ziwei Jiang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 4300731, China
| | - Yi Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Shunjie Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Chan Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Ziyi Tu
- HuBei Crawfish Industrial Tech Ltd., Qianjiang 433100, China
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Peng Guo
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| | - Liang Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| |
Collapse
|
3
|
Ramesh R, Sathiyamurthy K, Meganathan V, Athmanathan B. Induction and comparative resuscitation of viable but nonculturable state on Vibrio parahaemolyticus serotypes O3:K6 and O1:K25. Arch Microbiol 2024; 206:376. [PMID: 39141167 DOI: 10.1007/s00203-024-04102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.
Collapse
Affiliation(s)
- Rohini Ramesh
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Baskaran Athmanathan
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
4
|
Liu Z, Zhou Y, Wang H, Liu C, Wang L. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus. Int J Food Microbiol 2024; 417:110691. [PMID: 38631283 DOI: 10.1016/j.ijfoodmicro.2024.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Yi Zhou
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Chengchu Liu
- University of Maryland Sea Grant Extension Program, UMES Center for Food Science and Technology, Princess Anne, MD, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
5
|
İzgördü ÖK, Gurbanov R, Darcan C. Understanding the transition to viable but non-culturable state in Escherichia coli W3110: a comprehensive analysis of potential spectrochemical biomarkers. World J Microbiol Biotechnol 2024; 40:203. [PMID: 38753033 PMCID: PMC11098925 DOI: 10.1007/s11274-024-04019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Du Q, Ding Y, Wang Y, Wang J, Shao Y, Wang X. A novel phagomagnetic separation-ATP bioluminescence (PhMS-BL) for rapid and sensitive detection of viable Vibrio parahaemolyticus in aquatic product. Food Chem 2024; 439:138113. [PMID: 38043276 DOI: 10.1016/j.foodchem.2023.138113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Detection of viable Vibrio parahaemolyticus (V. parahaemolyticus) is a major challenge due to its significant risk to food safety and human health. Herein, we developed a phagomagnetic separation-ATP bioluminescence (PhMS-BL) assay based on phage VPHZ6 for rapid and sensitive detection of viable V. parahaemolyticus. Phage as a recognition element was coupled to magnetic beads to capture and enrich V. parahaemolyticus, shortening detection time and improving method sensitivity. The intracellular ATP released by chemical lysis using CTAB was quantified using firefly fluorescein-adenosine triphosphate bioluminescence system to detect viable bacteria. So, PhMS-BL method was able to detect V. parahaemolyticus in a linear range of 2.3 × 102 to 1.3 × 107 CFU mL-1, with a detection limit of 78 CFU mL-1 within 15 min. It is successfully applied to detect V. parahaemolyticus in spiked lake water, lobster tail meat, and clam meat. The developed detection strategy can rapidly and sensitively detect viable V. parahaemolyticus in food matrixes.
Collapse
Affiliation(s)
- Qiaoling Du
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Guan P, Fan S, Dong W, Wang X, Li Z, Song M, Suo B. Comparative genomic analysis and multilocus sequence typing of Staphylococcus aureus reveals candidate genes for low-temperature tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171331. [PMID: 38428609 DOI: 10.1016/j.scitotenv.2024.171331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Staphylococcus aureus is one of the most frequently detected foodborne pathogens in cold chain foods. Worryingly, small colony variants (SCVs) can survive in cold environments for a long time and can revert to rapidly growing cells in suitable environments, causing serious food safety issues. This study investigated the underlying mechanism of SCV formation at low temperature (4 °C) via comparative genomics. Multilocus sequence typing (MLST) of 105 strains of S. aureus was divided into 9 sequence types. The ST352 strains exhibited the greatest tolerance to low temperature, with a mean reduction in survival rate of 10.34 % (p < 0.05). Comparative genomics revealed a total of 1941 core genes in the three S. aureus strains, and BB-1 had 468 specific genes, which were enriched mainly in translation, DNA recombination, DNA repair, metabolic pathways, two-component systems, and quorum sensing. Molecular docking analysis revealed that the binding of the RsbW protein to the SigB protein of BB-1 decreased due to base mutations in rsbW, while the binding to the RsbV protein was enhanced. In addition, the results of real-time quantitative PCR showed that the RsbV-RsbW/SigB system of BB-1 may play a role in the low-temperature survival of S. aureus and the formation of SCVs. These results suggest that genes specific to BB-1 may contribute to the mechanism of adaptation to low temperature and the formation of SCVs. This study helps elucidate the causes of SCV formation by S. aureus at low temperature at the molecular level and provides a basis for exploring the safety control of cold chain food environments.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shijia Fan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wenjing Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zhen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Miao Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
8
|
Ekundayo TC, Ijabadeniyi OA. Global and regional prevalence of Cronobacter sakazakii in powdered milk and flour. Sci Rep 2024; 14:6865. [PMID: 38514864 PMCID: PMC10957878 DOI: 10.1038/s41598-024-57586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Cronobacter sakazakii (Cz) infections linked with powdered milk/flour (PMF) are on the increase in recent times. The current study aimed at assessing worldwide and regional prevalence of Cz in PMF. Cz-PMF-directed data were conscientiously mined in four mega-databases via topic-field driven PRISMA protocol without any restriction. Bivariate analysis of datasets was conducted and then fitted to random-intercept logistic mixed-effects regressions with leave-one-study-out-cross-validation (LOSOCV). Small-study effects were assayed via Egger's regression tests. Contributing factors to Cz contamination/detection in PMF were determined using 1000-permutation-bootstrapped meta-regressions. A total of 3761 records were found out of which 68 studies were included. Sample-size showed considerable correlation with Cz positivity (r = 0.75, p = 2.5e-17), Milkprod2020 (r = 0.33, p = 1.820e-03), and SuDI (r = - 0.30, p = 4.11e-03). The global prevalence of Cz in PMF was 8.39% (95%CI 6.06-11.51, PI: 0.46-64.35) with LOSOCV value of 7.66% (6.39-9.15; PI: 3.10-17.70). Cz prevalence in PMF varies significantly (p < 0.05) with detection methods, DNA extraction method, across continents, WHO regions, and world bank regions. Nation, detection method, world bank region, WHO region, and sample size explained 53.88%, 19.62%, 19.03%, 15.63%, and 9.22% of the true differences in the Cz prevalence in PMF, respectively. In conclusion, the results indicated that national will power in the monitoring and surveillance of Cz in PMF matched with adequate sample size and appropriate detection methods will go a long way in preventing Cz contamination and infections.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, South Africa.
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, South Africa
| |
Collapse
|
9
|
Zhou L, Liu D, Zhu Y, Zhang Z, Chen S, Zhao G, Zheng H. Advance typing of Vibrio parahaemolyticus through the mtlA and aer gene: A high-resolution, cost-effective approach. Heliyon 2024; 10:e25642. [PMID: 38356529 PMCID: PMC10865315 DOI: 10.1016/j.heliyon.2024.e25642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Vibrio parahaemolyticus is a significant cause of foodborne illness, and its incidence worldwide is on the rise. It is thus imperative to develop a straightforward and efficient method for typing strains of this pathogen. In this study, we conducted a pangenome analysis of 75 complete genomes of V. parahaemolyticus and identified the core gene mtlA with the highest degree of variation, which distinguished 44 strains and outperformed traditional seven-gene-based MLST when combined with aer, another core gene with high degree of variation. The mtlA gene had higher resolution to type strains with a close relationship compared to the traditional MLST genes in the phylogenetic tree built by core genomes. Strong positive selection was also detected in the gene mtlA (ω > 1), representing adaptive and evolution in response to the environment. Therefore, the panel of gene mtlA and aer may serve as a tool for the typing of V. parahaemolyticus, potentially contributing to the prevention and control of this foodborne disease.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Fudan University, Shanghai 200032, People's Republic of China
| | - Danlei Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Fudan University, Shanghai 200032, People's Republic of China
- Shanghai International Travel Healthcare Center, Shanghai Customs District PR China, Shanghai, 200335, People's Republic of China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Fudan University, Shanghai 200032, People's Republic of China
| | - Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai Customs District PR China, Shanghai, 200335, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Guoping Zhao
- Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
10
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
11
|
Wu Q, Liu J, Malakar PK, Pan Y, Zhao Y, Zhang Z. Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food Res Int 2023; 173:113462. [PMID: 37803786 DOI: 10.1016/j.foodres.2023.113462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
There is little known about the growth and survival of naturally-occurring Vibrio parahaemolyticus in harvested raw shrimps. In this study, the fate of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps was investigated from 4℃ to 30℃ using real-time PCR combined with propidium monoazide (PMA-qPCR). The Baranyi-model was used to fit the growth and survival data. A square root model and non-linear Arrhenius model was then used to quantify the parameters derived from the Baranyi-model. The results showed that naturally-occurring V. parahaemolyticus were slowly inactivated at 4℃ and 7℃ with deactivation rates of 0.019 Log CFU/g/h and 0.025 Log CFU/g/h. Conversely, at 15, 20, 25, and 30 °C, the average maximum growth rates (μmax) of naturally-occurring V. parahaemolyticus were determined to be 0.044, 0.105, 0.179 and 0.336 Log CFU/g/h, accompanied by the average lag phases (λ) of 15.5 h, 7.3 h, 4.4 h and 3.7 h. The validation metrics, Af and Bf, for both the square root model and non-linear, indicating that the model had a good ability to predict the growth behavior of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps. Furthermore, a comparative exploration between the growth of artificially contaminated V. parahaemolyticus in cooked shrimps and naturally-occurring V. parahaemolyticus in post-harvest raw shrimps revealed intriguing insights. While no substantial distinction in deactivation rates emerged at 4 °C and 7 °C (P > 0.05), a discernible disparity in growth rates was observable at 15 °C, 20 °C, 25 °C, and 30 °C, with the former surpassing the latter. Which indicated the risk of V. parahaemolyticus using models derived from cooked shrimps may be biased. Our study also unveiled a discernible seasonal effect. The μmax and λ of V. parahaemolyticus in shrimps harvested in summer were similar to those harvested in autumn, while the initial and maximum bacterial concentration harvested in summer were higher than those harvested in autumn. This predictive microbiology model of naturally-occurring V. parahaemolyticus in raw shrimps provides relevance to modelling growth in situ.
Collapse
Affiliation(s)
- Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
12
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
13
|
Fan Q, Dong X, Wang Z, Yue Y, Yuan Y, Wang Z, Yue T. TMT-Based Quantitative Proteomics and Non-targeted Metabolomic Analyses Reveal the Antibacterial Mechanism of Hexanal against Vibrio parahaemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12105-12115. [PMID: 37498004 DOI: 10.1021/acs.jafc.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Hexanal is a phytochemical with antimicrobial activity. However, its antibacterial effect and mechanism against Vibrio parahaemolyticus (V. parahaemolyticus) remain unclear. The study aims to elucidate the associated mechanism using tandem mass tag quantitative proteomics and non-targeted metabolomics. Hexanal treatment reduced intracellular ATP concentration, increased membrane permeability, and destroyed the morphology and ultrastructure of V. parahaemolyticus cells. Proteomics and metabolomics data indicated that 572 differentially expressed proteins (DEPs) and 241 differential metabolites (DMs) were identified in hexanal-treated V. parahaemolyticus. These DEPs and DMs were involved in multiple biological pathways including amino acid metabolism, purine and pyrimidine biosynthesis, etc. Bioinformatics analysis revealed that hexanal damaged the structure and function of cell membranes, inhibited nucleotide metabolism, and disturbed carbohydrate metabolism and tricarboxylic acid cycle (TCA) cycle, which ultimately resulted in growth inhibition and bacterial death. The study is conducive to better understand the mode of action of hexanal against V. parahaemolyticus and offers experimental foundation for the application of hexanal as the antibacterial agent in the seafood-associated industry.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xian 710000, People's Republic of China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
14
|
Bao Q, Bo X, Chen L, Ren Y, Wang H, Kwok LY, Liu W. Comparative Analysis Using Raman Spectroscopy of the Cellular Constituents of Lacticaseibacillus paracasei Zhang in a Normal and Viable but Nonculturable State. Microorganisms 2023; 11:1266. [PMID: 37317241 DOI: 10.3390/microorganisms11051266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
This study aimed to investigate the molecular composition of a viable but nonculturable (VBNC) state of a probiotic strain, Lacticaseibacillus paracasei Zhang (L. paracasei Zhang), using single-cell Raman spectroscopy (SCRS). Fluorescent microcopy with live/dead cell staining (propidium iodide and SYTO 9), plate counting, and scanning electron microscopy were used in combination to observe bacteria in an induced VBNC state. We induced the VBNC state by incubating the cells in de Man, Rogosa, and Sharpe broth (MRS) at 4 °C. Cells were sampled for subsequent analyses before VBNC induction, during it, and up to 220 days afterwards. We found that, after cold incubation for 220 days, the viable plate count was zero, but active cells could still be observed (as green fluorescent cells) under a fluorescence microscope, indicating that Lacticaseibacillus paracasei Zhang entered the VBNC state under these conditions. Scanning electron microscopy revealed the altered ultra-morphology of the VBNC cells, characterized by a shortened cell length and a wrinkled cell surface. Principal component analysis of the Raman spectra profiles revealed obvious differences in the intracellular biochemical constituents between normal and VBNC cells. Comparative analysis of the Raman spectra identified 12 main differential peaks between normal and VBNC cells, corresponding to carbohydrates, lipids, nucleic acids, and proteins. Our results suggested that there were obvious cellular structural intracellular macromolecular differences between normal and VBNC cells. During the induction of the VBNC state, the relative contents of carbohydrates (such as fructose), saturated fatty acids (such as palmitic acid), nucleic acid constituents, and some amino acids changed obviously, which could constitute a bacterial adaptive mechanism against adverse environmental conditions. Our study provides a theoretical basis for revealing the formation mechanism of a VBNC state in lactic acid bacteria.
Collapse
Affiliation(s)
- Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Bo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yan Ren
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014016, China
| | - Huiying Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
15
|
Pan H, Ren Q. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods 2022; 12:82. [PMID: 36613298 PMCID: PMC9818539 DOI: 10.3390/foods12010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival strategy for bacteria when encountered with unfavorable conditions. Under favorable environments such as nutrient supplementation, external stress elimination, or supplementation with resuscitation-promoting substances, bacteria will recover from the VBNC state, which is termed "resuscitation". The resuscitation phenomenon is necessary for proof of VBNC existence, which has been confirmed in different ways to exclude the possibility of culturable-cell regrowth. The resuscitation of VBNC cells has been widely studied for the purpose of risk control of recovered pathogenic or spoilage bacteria. From another aspect, the resuscitation of functional bacteria can also be considered a promising field to explore. To support this point, the resuscitation mechanisms were comprehensively reviewed, which could provide the theoretical foundations for the application of resuscitated VBNC cells. In addition, the proposed applications, as well as the prospects for further applications of resuscitated VBNC bacteria in the food industry are discussed in this review.
Collapse
Affiliation(s)
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
İzgördü ÖK, Darcan C, Kariptaş E. Overview of VBNC, a survival strategy for microorganisms. 3 Biotech 2022; 12:307. [PMID: 36276476 PMCID: PMC9526772 DOI: 10.1007/s13205-022-03371-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022] Open
Abstract
Microorganisms are exposed to a wide variety of stress factors in their natural environments. Under that stressful conditions, they move into a viable but nonculturable (VBNC) state to survive and maintain the vitality. At VBNC state, microorganisms cannot be detected by traditional laboratory methods, but they can be revived under appropriate conditions. Therefore, VBNC organisms cause serious food safety and public health problems. To date, it has been determined that more than 100 microorganism species have entered the VBNC state through many chemical and physical factors. During the last four decades, dating from the initial detection of the VBNC condition, new approaches have been developed for the induction, detection, molecular mechanisms, and resuscitation of VBNC cells. This review evaluates the current data of recent years on the inducing conditions and detection methods of the VBNC state, including with microorganisms on the VBNC state, their virulence, pathogenicity, and molecular mechanisms.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
17
|
A double layer agar plate method results in an improvement for enumerating Vibrio vulnificus and Vibrio parahaemolyticus exposed to nutrient deficiency and refrigeration temperature. Food Microbiol 2022; 107:104085. [DOI: 10.1016/j.fm.2022.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
|
18
|
Infectivity and Transmissibility of Acute Hepatopancreatic Necrosis Disease Associated Vibrio parahaemolyticus in Frozen Shrimp Archived at −80 °C. FISHES 2022. [DOI: 10.3390/fishes7030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VpAHPND) has been reported in commodity shrimp, but the potential risk of its global spread via frozen shrimp in the shrimp trade is yet to be fully explored. We hypothesized that frozen shrimp with AHPND could be a source of VpAHPND transmission; thus, the infectivity of frozen shrimp with AHPND was evaluated using a shrimp bioassay. To prepare infected frozen shrimp, 12 Penaeus vannamei (average weight, 2 g) were exposed to VpAHPND by immersion in water with a VpAHPND concentration of 1.55 × 107 CFU mL−1; once dead, the shrimp were stored at −80 °C for further analysis. After two weeks, a PCR assay was used to confirm AHPND positivity in frozen shrimp (n = 2), and VpAHPND was reisolated from the hepatopancreases of these shrimp. For the infectivity test, 10 P. vannamei (average weight, 4 g) were fed with the hepatopancreases of VpAHPND -infected frozen shrimp (n = 10). After feeding, 70% of the shrimp died within 118 h, and the presence of VpAHPND was confirmed using a PCR assay and histopathology examination; moreover, VpAHPND was successfully reisolated from the hepatopancreases of the dead shrimp. We are the first to evaluate the potential transmissibility of VpAHPND in frozen shrimp, and our results suggest that frozen shrimp with AHPND are a potential source of disease spreading between countries during international trade.
Collapse
|
19
|
Yang D, Wang Y, Zhao L, Rao L, Liao X. Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Res Int 2022; 151:110895. [PMID: 34980417 DOI: 10.1016/j.foodres.2021.110895] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
High pressure carbon dioxide (HPCD) has been used in food processing as a non-thermal pasteurization technology. However, the potential of HPCD to induce viable but non-culturable (VBNC) cells limits its application. The objective of this study was to explore the roles of extracellular pH of 3 (pHex3) and high pressure (HP) of HPCD during VBNC induction and the underlying molecular mechanism. By using the model organism Escherichia coli O157:H7, we found that the combined effects of pHex3 and HP could mimic the effect of HPCD for VBNC induction. Further investigation of the individual effect of pHex3 and HP on VBNC induction revealed that pHex3 could induce a higher proportion of VBNC cells with a slower induction rate compared with HPCD, whereas HP was unable to induce VBNC formation. Notably, the cells treated by pHex3 and HPCD had similar morphological changes, and VBNC cells induced by pHex3 and HPCD had similar stress resistance characteristics. These results strongly indicated that pHex3 introduced by HPCD was a main factor for VBNC induction. Additionally, we found that HP played the role in accelerating VBNC formation in the process of HPCD treatment. Transcriptomic analysis revealed 85, 263 and 529 differentially expressed genes (DEGs) for HP-, pHex3- and HPCD-treated cells compared with untreated ones. 59 DEGs shared by pHex3 and HPCD treatment might be responsible for VBNC induction, and they were mainly involved in cellular transport and localization.
Collapse
Affiliation(s)
- Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
20
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
21
|
Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M. Quantitative microbiological risk assessment of complex microbial community in Prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126418. [PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
Collapse
Affiliation(s)
- Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Balkis Talip
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Mohamed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Muhanna Al-Shaibani
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| |
Collapse
|
22
|
Yoon JH, Bae YM, Jo S, Moon SK, Oh SW, Lee SY. Optimization of resuscitation-promoting broths for the revival of Vibrio parahaemolyticus from a viable but nonculturable state. Food Sci Biotechnol 2021; 30:159-169. [PMID: 33552627 DOI: 10.1007/s10068-020-00843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to examine the effect of formulated resuscitation-promoting broths on the revival of viable but nonculturable Vibrio parahaemolyticus induced by cold and starvation stresses. Vibrio parahaemolyticus was incubated in artificial sea water at 4 °C for more than 8 months until this bacterium became undetectable, while retaining its intact cell count of more than 105 CFU/field over time. On day 250, V. parahaemolyticus was collected and enriched in tryptic soy broth supplemented with 3% NaCl, 10,000 U/mg catalase, 2% sodium pyruvate, 20 mM MgSO4, 5 mM EDTA, and a cell-free supernatant taken from V. parahaemolyticus ATCC 17802 in the stationary phase (pH 8). V. parahaemolyticus returned partially to a culturable state with a maximal cell density of 7.91 log CFU/mL in this formulated medium following 7 days of enrichment at 25 °C. In contrast, no V. parahaemolyticus was resuscitated when enriched in alkaline peptone water and tryptic soy broth.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Suyoung Jo
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
23
|
Kim SH, Chelliah R, Ramakrishnan SR, Perumal AS, Bang WS, Rubab M, Daliri EBM, Barathikannan K, Elahi F, Park E, Jo HY, Hwang SB, Oh DH. Review on Stress Tolerance in Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:596570. [PMID: 33614524 PMCID: PMC7890702 DOI: 10.3389/fcimb.2020.596570] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.
Collapse
Affiliation(s)
- Se-Hun Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea.,College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | | - Woo-Suk Bang
- Department of Food and Nutrition, College of Human Ecology and Kinesiology, Yeungnam University, Gyeongsan, South Korea
| | - Momna Rubab
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eunji Park
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyeon Yeong Jo
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Bin Hwang
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog Hwan Oh
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
24
|
Krzyżek P, Grande R. Transformation of Helicobacter pylori into Coccoid Forms as a Challenge for Research Determining Activity of Antimicrobial Substances. Pathogens 2020; 9:pathogens9030184. [PMID: 32143312 PMCID: PMC7157236 DOI: 10.3390/pathogens9030184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Morphological variability is one of the phenotypic features related to adaptation of microorganisms to stressful environmental conditions and increased tolerance to antimicrobial substances. Helicobacter pylori, a gastric mucosal pathogen, is characterized by a high heterogeneity and an ability to transform from a spiral to a coccoid form. The presence of the coccoid form is associated with the capacity to avoid immune system detection and to promote therapeutic failures. For this reason, it seems that the investigation for new, alternative methods combating H. pylori should include research of coccoid forms of this pathogen. The current review aimed at collecting information about the activity of antibacterial substances against H. pylori in the context of the morphological variability of this bacterium. The collected data was discussed in terms of the type of substances used, applied research techniques, and interpretation of results. The review was extended by a polemic on the limitations in determining the viability of coccoid H. pylori forms. Finally, recommendations which can help in future research aiming to find new compounds with a potential to eradicate H. pylori have been formulated.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Rossella Grande
- Center for Aging Science and Translational Medicine (CeSI-MeT), Via Luigi Polacchi, 11, 66100 Chieti, Italy;
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
25
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|