1
|
Baixauli R, Tárrega A, Hernando I, Laguna L. Foaming purees as a strategy to modify oral processing time. Curr Res Food Sci 2024; 10:100962. [PMID: 39811254 PMCID: PMC11730571 DOI: 10.1016/j.crfs.2024.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Food structure modification by increasing viscosity or adding heterogeneity to the food product has shown to effectively change food oral processing. In this study, it was hypothesized that the addition of gas to purees could affect oral processing. This was achieved by creating different structures in purees using a gas syphon, vacuum and syphon + vacuum. The physical properties of the puree (density, flow and mechanical properties) as well as oral processing characteristics, sensory perception and hunger profiles were investigated. Physical measurements showed that the incorporation of gas affected the puree structure as evidenced by a decrease in viscosity, hardness and consistency of the purees. At the oral level, these foamed purees took longer to swallow, which was also reflected in a lower eating rate and slightly lower amount consumed. These changes did not affect hunger or satiety. Therefore, this technique could be beneficial for people who need to eat smaller amounts of food, or for people with swallowing problems, for whom more time in the mouth is recommended without an increase in sensory satiety.
Collapse
Affiliation(s)
- R. Baixauli
- Institute of Agrochemistry and Food Technology (IATA, CSIC), Spain
| | - A. Tárrega
- Institute of Agrochemistry and Food Technology (IATA, CSIC), Spain
| | - I. Hernando
- Instituto Universitario de Ingeniería de Alimentos-FoodUPV. Universitat Politècnica de València, Camino de Vera, S/n, 46021, Valencia, Spain
| | - L. Laguna
- Institute of Agrochemistry and Food Technology (IATA, CSIC), Spain
| |
Collapse
|
2
|
Nadia J, Roy D, Montoya CA, Singh H, Acevedo-Fani A, Bornhorst GM. A proposed framework to establish in vitro- in vivo relationships using gastric digestion models for food research. Food Funct 2024; 15:10233-10261. [PMID: 39302221 DOI: 10.1039/d3fo05663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/22/2024]
Abstract
In vitro digestion methods have been utilized in food research to reduce in vivo studies. Although previous studies have related in vitro and in vivo data, there is no consensus on how to establish an in vitro-in vivo relationship (IVIVR) for food digestion. A framework that serves as a tool to evaluate the utility and limitations of in vitro approaches in simulating in vivo processes is proposed to develop IVIVRs for food digestion, with a focus on the gastric phase as the main location of food structural breakdown during digestion. The IVIVR consists of three quantitative levels (A, B, and C) and a qualitative level (D), which relate gastric digestion kinetic data on a point-to-point basis, parameters derived from gastric digestion kinetic data, in vitro gastric digestion parameters with in vivo absorption or appearance parameters, and in vitro and in vivo trends, respectively. Level A, B, and C IVIVRs can be used to statistically determine the agreement between in vitro and in vivo data. Level A and B IVIVRs can be utilized further evaluate the accuracy of the in vitro approach to mimic in vivo processes. To exemplify the utilization of this framework, case studies are provided using previously published static and dynamic gastric in vitro digestion data and in vivo animal study data. Future food digestion studies designed to establish IVIVRs should be conducted to refine and improve the current framework, and to improve in vitro digestion approaches to better mimic in vivo phenomena.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
4
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38821104 DOI: 10.1080/10408398.2024.2353366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/02/2024]
Abstract
Encapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab, Pakistan
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Santos-Sánchez G, Miralles B, Brodkorb A, Dupont D, Egger L, Recio I. Current advances for in vitro protein digestibility. Front Nutr 2024; 11:1404538. [PMID: 38873563 PMCID: PMC11174598 DOI: 10.3389/fnut.2024.1404538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Protein is an essential macronutrient in our diet, source of nitrogen and essential amino acids, but the biological utilization of dietary protein depends on its digestibility and the absorption of amino acids and peptides in the gastrointestinal tract. The methods to define the amount and the quality of protein to meet human nutritional needs, such as the Digestible Indispensable Amino Acid Score (DIAAS), require the use of animal models or human studies. These in vivo methods are the reference in protein quality evaluation, but they are expensive and long-lasting procedures with significant ethical restrictions. Therefore, the development of rapid, reproducible and in vitro digestion methods validated with in vivo data is an old demand. This review describes the challenges of the in vitro digestion methods in the evaluation of the protein nutritional quality. In addition to the technical difficulties to simulate the complex and adaptable processes of digestion and absorption, these methods are affected by similar limitations as the in vivo procedures, i.e., analytical techniques to accurately determine bioavailable amino acids and the contribution of the endogenous nitrogen. The in vitro methods used for the evaluation of protein digestibility, with special attention on those showing comparative data, are revised, emphasizing their pros and cons. The internationally harmonized digestion protocol proposed by the INFOGEST network is being adapted to evaluate protein and amino acid digestibility. The inter-laboratory reproducibility of this protocol was demonstrated for dairy products. The in vivo/in vitro comparability results obtained to date with this protocol for several plant and animal sources are promising, but it requires an extensive validation with a wider range of foods and substrates with known in vivo digestibility. These in vitro methods will probably not be applicable to all foods, and therefore, it is important to identify their limitations, not to elude their use, but to apply them within the limits, by using the appropriate standards and references, and always as a complementary tool to in vivo tests to reduce their number.
Collapse
Affiliation(s)
| | - Beatriz Miralles
- Institute of Food Science Research, CIAL (CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | | | | | | | - Isidra Recio
- Institute of Food Science Research, CIAL (CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| |
Collapse
|
6
|
Hossain MM, Tovar J, Cloetens L, Nilsson A. Inclusion of Oat Polar Lipids in a Solid Breakfast Improves Glucose Tolerance, Triglyceridemia, and Gut Hormone Responses Postprandially and after a Standardized Second Meal: A Randomized Crossover Study in Healthy Subjects. Nutrients 2023; 15:4389. [PMID: 37892464 PMCID: PMC10609583 DOI: 10.3390/nu15204389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, it has been indicated that oat polar lipids included in a liquid meal may have the potential to beneficially modulate various cardiometabolic variables. The purpose of this study was to evaluate the effects of oat polar lipids in a solid food matrix on acute and second meal glucose tolerance, blood lipids, and concentrations of gut-derived hormones. The oat polar lipids were consumed at breakfast and effects on the biomarkers were investigated in the postprandial period and following a standardized lunch. Twenty young, healthy subjects consumed in total four different breakfast meals in a crossover study design. The breakfasts consisted of 1. White wheat bread (WWB) with an added 7.5 g of oat polar lipids (PLL); 2. WWB with an added 15 g of oat polar lipids (PLH); 3. WWB with and added 16.6 g of rapeseed oil (RSO) as a representative of commonly consumed oils; and 4. WWB consumed alone, included as a reference. All products with added lipids contained equivalent amounts of fat (16.6 g) and available carbohydrates (50 g). Rapeseed oil was added to the oat polar lipid meals to equal 16.6 g of total fat. The standardized lunch was composed of WWB and meatballs and was served 3.5 h after the breakfast. Test variables (blood glucose, serum insulin, triglyceride (TG), free fatty acids (FFA), ghrelin, GLP-1, PYY, and GIP) were measured at fasting and repeatedly during the 5.5 h after ingestion of the breakfast. After breakfast, PLH substantially lowered postprandial glucose and insulin responses (iAUC 0-120 min) compared with RSO and WWB (p < 0.05). Furthermore, a reduced glycaemic response to lunch (210-330 min) was observed following the PLH breakfast compared to all of the other breakfasts served (p < 0.05). Oat polar lipids (PLH) significantly reduced TG and ghrelin and increased circulating gut hormones GLP-1 and PYY compared to RSO (p < 0.05). The results show that exchanging part of the dietary lipids with oat polar lipids has the potential to improve postprandial blood glucose regulation and gut hormones and thus may have a preventive effect against type 2 diabetes.
Collapse
Affiliation(s)
- Mohammad Mukul Hossain
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| | - Lieselotte Cloetens
- Division of Pure and Applied Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Anne Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| |
Collapse
|
7
|
Subramanian P, Nadia J, Paul Singh R, Bornhorst GM. Comparison of four digestion protocols on the physical characteristics of gastric digesta from cooked couscous using the Human Gastric Simulator. Food Funct 2023; 14:8229-8247. [PMID: 37674386 DOI: 10.1039/d3fo01920a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/08/2023]
Abstract
In vitro digestion is widely employed in food, nutraceutical and pharmaceutical research, and numerous in vitro gastric digestion protocols have been proposed, with a wide range of experimental conditions. Differences in the simulated gastric fluids (pH, mineral content, enzyme type and enzyme activity) of different digestion protocols may alter the results for the digestion of the same meal. This study aimed to investigate how variations in the gastric secretion rate and composition in four in vitro digestion protocols (Infogest Riddet, Infogest Semi-dynamic, UC Davis and United States Pharmacopeia) impacted the physical properties of the emptied gastric digesta. Cooked couscous was used as a model meal and subjected to simulated gastric digestion using a dynamic gastric model, the Human Gastric Simulator (HGS). The digesta were collected from the outlet of the HGS after 15, 30, 60, 90, 120, 150, or 180 min. The gastric emptying of dry matter, pH, rheological properties, and particle size were evaluated. The digestion protocol significantly influenced the solid content and moisture content of the digesta (p < 0.001), particles per gram of dry matter (p < 0.0001), gastric emptying of dry matter (p < 0.003), shear stress at 0.45 s-1 and consistency coefficient (p < 0.0001). The presence of NaHCO3 in the Infogest Riddet and Infogest Semi-dynamic gastric secretions provided an additional buffering effect and increased the digesta pH during gastric digestion. Similarly, the inclusion of mucin in the UC Davis protocol resulted in a higher flow and viscoelastic properties of the emptied digesta. The highest dilution of gastric content in the United States Pharmacopeia (USP) protocol resulted in larger particles emptied from the HGS and the longest gastric emptying half-time of all digestion protocols. These findings provide new insights into the impact of digestion protocols on the digesta properties, which can be beneficial for the design and standardization of in vitro digestion models.
Collapse
Affiliation(s)
| | - Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - R Paul Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| |
Collapse
|
8
|
Toyokuni S, Kong Y, Katabuchi M, Maeda Y, Motooka Y, Ito F, Yanatori I. Iron links endogenous and exogenous nanoparticles. Arch Biochem Biophys 2023; 745:109718. [PMID: 37579931 DOI: 10.1016/j.abb.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Current progress in biology and medical science is based on the observation at the level of nanometers via electron microscopy and computation. Of note, the size of most cells in higher species exists in a limited range from 5 to 50 μm. Recently, it was demonstrated that endogenous extracellular nanoparticles play a role in communication among various cellular types in a variety of contexts. Among them, exosomes in serum have been established as biomarkers for human diseases by analyzing the cargo molecules. No life on the earth can survive without iron. However, excess iron can be a risk for carcinogenesis in rodents and humans. Nano-sized molecules may cause unexpected bioeffects, including carcinogenesis, which is a process to establish cellular iron addiction with ferroptosis-resistance. Asbestos and carbon nanotubes are the typical examples, leading to carcinogenesis by the alteration of iron metabolism. Recently, we found that CD63, one of the representative markers of exosomes, is under the regulation of iron-responsive element/iron-regulatory protein system. This is a safe strategy to share excess iron in the form of holo-ferritin between iron-sufficient and -deficient cells. On the other hand, damaged cells may secrete holo-ferritin-loaded exosomes as in the case of macrophages in ferroptosis after asbestos exposure. These holo-ferritin-loaded exosomes can cause mutagenic DNA damage in the recipient mesothelial cells. Thus, there is an iron link between exogenous and endogenous nanoparticles, which requires further investigation for better understanding and the future applications.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Misako Katabuchi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Bayrak M, Mata J, Conn C, Floury J, Logan A. Application of small angle scattering (SAS) in structural characterisation of casein and casein-based products during digestion. Food Res Int 2023; 169:112810. [PMID: 37254386 DOI: 10.1016/j.foodres.2023.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent years, small and ultra-small angle scattering techniques, collectively known as small angle scattering (SAS) have been used to study various food structures during the digestion process. These techniques play an important role in structural characterisation due to the non-destructive nature (especially when using neutrons), various in situ capabilities and a large length scale (of 1 nm to ∼20 μm) they cover. The application of these techniques in the structural characterisation of dairy products has expanded significantly in recent years. Casein, a major dairy protein, forms the basis of a wide range of gel structures at different length scales. These gel structures have been extensively researched utilising scattering techniques to obtain structural information at the nano and micron scale that complements electron and confocal microscopy. Especially, neutrons have provided opportunity to study these gels in their natural environment by using various in situ options. One such example is understanding changes in casein gel structures during digestion in the gastrointestinal tract, which is essential for designing personalised food structures for a wide range of food-related diseases and improve health outcomes. In this review, we present an overview of casein gels investigated using small angle and ultra-small angle scattering techniques. We also reviewed their digestion using newly built setups recently employed in various research. To gain a greater understanding of micro and nano-scale structural changes during digestion, such as the effect of digestive juices and mechanical breakdown on structure, new setups for semi-solid food materials are needed to be optimised.
Collapse
Affiliation(s)
- Meltem Bayrak
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Charlotte Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
10
|
Improved Stabilization and In Vitro Digestibility of Mulberry Anthocyanins by Double Emulsion with Pea Protein Isolate and Xanthan Gum. Foods 2022; 12:foods12010151. [PMID: 36613367 PMCID: PMC9818945 DOI: 10.3390/foods12010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
There is significant evidence that double emulsion has great potential for successfully encapsulating anthocyanins. However, few research studies are currently using a protein-polysaccharide mixture as a stable emulsifier for double emulsion. This study aimed to improve the stability and in vitro digestibility of mulberry anthocyanins (MAs) by employing a double emulsion composed of pea protein isolate (PPI) and xanthan gum (XG). The influence of various XG concentrations (0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%) and different temperatures (5 °C, 25 °C, 45 °C, 65 °C) on the physical stability and the thermal degradation of MAs from double emulsions were investigated. In addition, the physicochemical properties of double emulsions and the release performance of MAs during in vitro simulated digestion were evaluated. It was determined that the double emulsion possessed the most stable physical characteristics with the 1% XG addition. The PPI-1% XG double emulsion, when compared to the PPI-only double emulsion, expressed higher thermal stability with a retention rate of 83.19 ± 0.67% and a half-life of 78.07 ± 4.72 days. Furthermore, the results of in vitro simulated digestion demonstrated that the MAs in the PPI-1% XG double emulsion were well-protected at oral and gastric with ample release found in the intestine, which was dissimilar to findings for the PPI-only double emulsion. Ultimately, it was concluded that the double emulsion constructed by the protein-polysaccharide system is a quality alternative for improving stability and absorption with applicability to a variety of food and beverage systems.
Collapse
|
11
|
Dong X, Wu P, Cong H, Chen XD. Mechanistic study on in vitro disintegration and proteolysis of whey protein isolate gels: Effect of the strength of sodium ions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
|
12
|
Gao Q, Sun Y, He R, Zheng J, Zhang B, Tan CP, Fu X, Huang Q. Molecular encapsulation of cinnamaldehyde in V-type starch: The role of solvent and temperature. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
13
|
von Gerichten J, Elnesr MH, Prollins JE, De Mel IA, Flanagan A, Johnston JD, Fielding BA, Short M. The [ 13 C]octanoic acid breath test for gastric emptying quantification: A focus on nutrition and modeling. Lipids 2022; 57:205-219. [PMID: 35799422 PMCID: PMC9546385 DOI: 10.1002/lipd.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Gastric emptying (GE) is the process of food being processed by the stomach and delivered to the small intestine where nutrients such as lipids are absorbed into the blood circulation. The combination of an easy and inexpensive method to measure GE such as the CO2 breath test using the stable isotope [13C]octanoic acid with semi‐mechanistic modeling could foster a wider application in nutritional studies to further understand the metabolic response to food. Here, we discuss the use of the [13C]octanoic acid breath test to label the solid phase of a meal, and the factors that influence GE to support mechanistic studies. Furthermore, we give an overview of existing mathematical models for the interpretation of the breath test data and how much nutritional studies could benefit from a physiological based pharmacokinetic model approach.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Marwan H Elnesr
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Joe E Prollins
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Ishanki A De Mel
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Alan Flanagan
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Michael Short
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
14
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
15
|
Feng J, Wu P, Chen XD. Quantitative visualization study on the physical movement and gastric emptying of diced carrot particle in a transparent rat stomach-duodenum model. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, a transparent soft-elastic silicone rat stomach model was prepared to visualize the gastric movement and emptying of one individual diced carrot in a dynamic in vitro rat stomach system. The influences of the viscosity of solution medium, the pattern of gastric peristalsis and the extraction rate of the emptying pump on the location and gastric residence time of the carrot particle were examined. A proper medium viscosity could promote the emptying of the carrot particle. Compared to the combined actions of plate and roller, gastric residence time of the carrot particle was reduced from 32.3 to 19.8 min under the single plate compression. This time was also shortened from 34.8 to 12.3 min when the extraction rate of emptying pump was changed from 100 mL/min to 400 mL/min. Knowledge gained from this work is unique and may provide new insights for optimizing biomimic gastrointestinal models.
Collapse
Affiliation(s)
- Jiajun Feng
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| |
Collapse
|
16
|
Horstman AMH, Huppertz T. Milk proteins: Processing, gastric coagulation, amino acid availability and muscle protein synthesis. Crit Rev Food Sci Nutr 2022; 63:10267-10282. [PMID: 35611879 DOI: 10.1080/10408398.2022.2078782] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
It is well-known that the postprandial muscle protein synthetic response to protein ingestion is regulated on various levels, including dietary protein digestion and amino acid (AA) absorption, splanchnic AA retention, the availability of dietary protein-derived AA in the circulation, delivery of AA to the muscle, uptake of AA by the muscle, and intramuscular signaling. AA availability after consumption of dairy products is primarily determined by the rate of gastric emptying of milk proteins, which is mainly linked to coagulation of milk proteins in the stomach. Caseins form gastric coagula, which make their gastric emptying and subsequent postprandial aminoacidemia notably slower than that of whey proteins. Only recently, the role of processing, food structure, preservation and matrix on coagulation herein has been getting attention. In this review we describe various processes, that affect gastric coagulation of caseins and therewith control gastric emptying, such as the conversion to caseinate, heat treatment in the presence of whey proteins, conversion to stirred yoghurt and enzymatic hydrolysis. Modulating product characteristics by processing can be very useful to steer the gastric behavior of protein, and the subsequent digestion and AA absorption and muscle anabolic response to maintain or increase muscle mass.
Collapse
Affiliation(s)
| | - Thom Huppertz
- Research & Development, FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Mengucci C, Ferranti P, Romano A, Masi P, Picone G, Capozzi F. Food structure, function and artificial intelligence. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
18
|
Huyan Z, Pellegrini N, Steegenga W, Capuano E. Insights into gut microbiota metabolism of dietary lipids: the case of linoleic acid. Food Funct 2022; 13:4513-4526. [PMID: 35348564 DOI: 10.1039/d1fo04254h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
It has been recognized that, next to dietary fibre and proteins, gut microbiota can metabolize lipids producing bioactive metabolites. However, the metabolism of dietary lipids by human gut microbiota has been poorly explored so far. This study aimed to examine the change in lipids, particularly linoleic acid (LA), induced by the chemical form of lipids and the presence of the plant matrix. Short-chain fatty acid (SCFA) production was monitored to get an insight into microbial activity. Free LA, glyceryl trilinoleate and soybean oil as well as digested intact (DS) and broken (BS) soybean cells were subjected to in vitro fermentation using human faecal inoculums. Confocal microscopy was used to visualize the soybean cell integrity. Three LA metabolites, including two conjugated fatty acids (CLAs, 9z,11e and 9e,11e) and 12hydroxy, 9z C18:1, were identified and monitored. Free LA addition improved the LA metabolite production but reduced SCFA concentrations compared to trilinoleate and soybean oil. Breaking cell integrity had impacts on CLA, hydroxy C18:1 and SCFA production and free fatty acid release within the first 24 h of fermentation, but this effect vanished with time. In contrast, soybean oil only increased free LA release and hydroxy C18:1 production. The content of several FAs decreased during fermentation suggesting a substantial conversion in microbial metabolites. Besides, LA metabolites were also identified in the fermentation pellets suggesting the incorporation of microbial FA metabolites into bacterial cells. This study expands our understanding of microbial metabolism of dietary lipids with a special emphasis on the role of food- and diet-related factors.
Collapse
Affiliation(s)
- Zongyao Huyan
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands.
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands. .,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Wilma Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
20
|
Colombo R, Ferron L, Frosi I, Papetti A. Advances in static in vitro digestion models after the COST action Infogest consensus protocol. Food Funct 2021; 12:7619-7636. [PMID: 34250533 DOI: 10.1039/d1fo01089a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
In vitro digestion models are essential to predictively evaluate the bioaccessibility and bioactivity of food molecules or natural products. Dynamic models better simulate the gastrointestinal conditions as they reproduce similar physiological environments. Despite this, static methods, also known as biochemical methods, represent a simple and useful approach for the study of different types of molecules, with a broad applicability in the nutritional, pharmaceutical, and toxicological fields. In addition, static models can be validated, avoiding the disadvantage of a difficult reproducibility of dynamic in vitro systems and inter-individual variations of in vivo experiments. A crucial point in the standardization of static models was the COST Action Infogest in 2014, which elaborated an international consensus static digestion method to harmonize experimental conditions and has general guidelines, thus allowing the comparison of studies and data. The aim of our review is to underline the impact of the Infogest consensus method and the development and evolution of in vitro static methods in the following years, with a focus on food applications.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100, Pavia, Italy.
| | | | | | | |
Collapse
|
21
|
Runge AKW, Hendy J, Richter KK, Masson-MacLean E, Britton K, Mackie M, McGrath K, Collins M, Cappellini E, Speller C. Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome. Proc Biol Sci 2021; 288:20210020. [PMID: 34229485 PMCID: PMC8261203 DOI: 10.1098/rspb.2021.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
The domestic dog has inhabited the anthropogenic niche for at least 15 000 years, but despite their impact on human strategies, the lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. In the Arctic, dogs rely exclusively on humans for food during the winter, and while stable isotope analyses have revealed dietary similarities at some sites, deciphering the details of provisioning strategies have been challenging. In this study, we apply zooarchaeology by mass spectrometry (ZooMS) and liquid chromatography tandem mass spectrometry to dog palaeofaeces to investigate protein preservation in this highly degradable material and obtain information about the diet of domestic dogs at the Nunalleq site, Alaska. We identify a suite of digestive and metabolic proteins from the host species, demonstrating the utility of this material as a novel and viable substrate for the recovery of gastrointestinal proteomes. The recovered proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon species (coho, chum, chinook and sockeye) and that the consumed tissues derived from muscle and bone tissues as well as roe and guts. Overall, the study demonstrated the viability of permafrost-preserved palaeofaeces as a unique source of host and dietary proteomes.
Collapse
Affiliation(s)
- Anne Kathrine W Runge
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07743 Jena, Germany
| | - Kristine K Richter
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07743 Jena, Germany.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | | | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103
| | - Meaghan Mackie
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark.,The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 København N, Denmark
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Matthew Collins
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark.,Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Enrico Cappellini
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark
| | - Camilla Speller
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, Canada V6T 1Z1
| |
Collapse
|
22
|
Nadia J, Olenskyj AG, Stroebinger N, Hodgkinson SM, Estevez TG, Subramanian P, Singh H, Singh RP, Bornhorst GM. Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food Funct 2021; 12:4349-4372. [PMID: 33884384 DOI: 10.1039/d0fo02917c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
There is currently a limited understanding of the effect of food structure on physical breakdown and gastric emptying of solid starch-based foods during gastric digestion. Moisture uptake, pH, particle size, rheological, and textural properties of six solid starch-based diets from different sources (Durum wheat and high amylose white rice) and of different macrostructures (porridge, native grain, agglomerate/couscous, and noodle) were monitored during 240 min of gastric digestion in a growing pig model. Changes in the physical properties of the gastric digesta were attributed to the influence of gastric secretions and gastric emptying, which were both dependent on the buffering capacity and initial macrostructure of the diets. Differences between the proximal and distal stomach regions were found in the intragastric pH and texture of the gastric digesta. For example, rice couscous, which had the smallest particle size and highest buffering capacity among the rice-based diets, had the shortest gastric emptying half-time and no significant differences between proximal and distal stomach digesta physical properties. Additionally, a relationship between gastric breakdown rate, expressed as gastric softening half-time from texture analysis, and gastric emptying half-time of dry matter was also observed. These findings provide new insights into the breakdown processes of starch-based solid foods in the stomach, which can be beneficial for the development of food structures with controlled rates of breakdown and gastric emptying during digestion.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
24
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Chen W, Liao A, Hou Y, Pan L, Yu G, Du J, Yang C, Li X, Huang J. Digestive characteristics and peptide release from wheat embryo proteins in vitro. Food Funct 2021; 12:2257-2269. [PMID: 33596303 DOI: 10.1039/d0fo03193c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Due to the scarcity of the data on digestion and metabolism of wheat embryo proteins WEP, a simulated gastrointestinal digestion (SGID) scheme in vitro was utilized to explain the protein hydrolysis and biological activity of WEP during the digestion process. WEP had a certain degree of resistance to gastric digestion, especially the protein with a molecular weight of 50 kDa. In all the samples, no visually intact protein band emerged in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) during the intestinal phase, which was consistent with a gradually increasing content of released free amino acids. Moreover, the resistant digestion peptides (the amino acid sequences were ISQFXX and GTVX) were identified at the end of the gastrointestinal digestion (GID) product by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Although the complete protein in the sample was degraded, the antioxidant activity was not negatively affected, rather it showed an increasing trend and maintained a higher level of activity. The amount of the β-sheet gradually increased as that of the α-helix declined, the random coil decreased, whereas no obvious change was noticed in β-turn content. The results provide a better understanding for optimal selection of peptide candidates for designing protein products in the food processing industry as well as for WEP digestion and metabolism in the human body.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Aimei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China and School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450001, China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Guanghai Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing 100000, China
| | - Canrui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Xiaoxiao Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China. and The Key Laboratory of Henan Province for Wheat Bioprocessing and Nutritional Function, Science and Technology Department, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Feeney EL, Lamichhane P, Sheehan JJ. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health – A food science and a human nutrition perspective. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12755] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emma L Feeney
- Institute of Food and Health University College Dublin 2.16a Science Centre South Dublin 4Ireland
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
| | - Prabin Lamichhane
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| | - Jeremiah J Sheehan
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| |
Collapse
|
27
|
The importance of swelling for in vitro gastric digestion of whey protein gels. Food Chem 2020; 330:127182. [DOI: 10.1016/j.foodchem.2020.127182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
|
28
|
Malekjani N, Jafari SM. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf 2020; 20:3-47. [PMID: 33443795 DOI: 10.1111/1541-4337.12660] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022]
Abstract
The encapsulation process has been utilized in the field of food technology to enhance the technofunctional properties of food products and the delivery of nutraceutical ingredients via food into the human body. The latter application is very similar to drug delivery systems. The inherent sophisticated nature of release mechanisms requires the utilization of mathematical equations and statistics to predict the release behavior during the time. The science of mathematical modeling of controlled release has gained a tremendous advancement in drug delivery in recent years. Many of these modeling methods could be transferred to food. In order to develop and design enhanced food controlled/targeted bioactive release systems, understanding of the underlying physiological and chemical processes, mechanisms, and principles of release and applying the knowledge gained in the pharmaceutical field to food products is a big challenge. Ideally, by using an appropriate mathematical model, the formulation parameters could be predicted to achieve a specific release behavior. So, designing new products could be optimized. Many papers are dealing with encapsulation approaches and evaluation of the impact of process and the utilized system on release characteristics of encapsulated food bioactives, but still, there is no deep insight into the mathematical release modeling of encapsulated food materials. In this study, information gained from the pharmaceutical field is collected and discussed to investigate the probable application in the food industry.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
29
|
Verboven P, Defraeye T, Datta AK, Nicolai B. Digital twins of food process operations: the next step for food process models? Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
30
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
31
|
Liu W, Jin Y, Wilde PJ, Hou Y, Wang Y, Han J. Mechanisms, physiology, and recent research progress of gastric emptying. Crit Rev Food Sci Nutr 2020; 61:2742-2755. [DOI: 10.1080/10408398.2020.1784841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J. Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
32
|
Somaratne G, Ye A, Nau F, Ferrua MJ, Dupont D, Paul Singh R, Singh J. Role of biochemical and mechanical disintegration on β-carotene release from steamed and fried sweet potatoes during in vitro gastric digestion. Food Res Int 2020; 136:109481. [PMID: 32846563 DOI: 10.1016/j.foodres.2020.109481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022]
Abstract
The role of biochemical and mechanical disintegration on β-carotene release from steamed sweet potatoes (SSP) and fried sweet potatoes (FSP) during in vitro gastric digestion was investigated. Results revealed that, in the absence of mechanical forces generated by the stomach, biochemical digestion did not have a great effect on the breakdown of cell walls within the sweet potato food matrix and the release of ß-carotene was similar in both SSP and FSP. Cell wall in the plant-food may act as a physical 'barrier' towards the action of gastric juice and to the release of nutrients into the gastric digesta. However, FSP underwent quicker softening and collapse during in vitro gastric digestion compared to the compact and denser structure of SSP. This may explain the faster cell wall breakdown and subsequent β-carotene release from FSP cellular matrix than SSP when mechanical forces are applied as in the human gastric simulator (HGS).
Collapse
Affiliation(s)
- Geeshani Somaratne
- Riddet Institute and Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, 20450, Sri Lanka
| | - Aiqian Ye
- Riddet Institute and Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | | | - Maria J Ferrua
- Riddet Institute, Massey University, Palmerston North, New Zealand; Fonterra Research and Development Centre, Palmerston North, New Zealand
| | | | - R Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Jaspreet Singh
- Riddet Institute and Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
33
|
Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzyński M, Nowakowska D, Matwijczuk A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols-A Non-Systematic Review. Nutrients 2020; 12:E1401. [PMID: 32414132 PMCID: PMC7284996 DOI: 10.3390/nu12051401] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
There is increased interest in following a healthy lifestyle and consuming a substantial portion of secondary plant metabolites, such as polyphenols, due to their benefits for the human body. Food products enriched with various forms of fruits and vegetables are sources of pro-health components. Nevertheless, in many cases, the level of their activities is changed in in vivo conditions. The changes are strictly connected with processes in the digestive system that transfigure the structure of the active compounds and simultaneously keep or modify their biological activities. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed to predict their release from the food matrix, as well as their bioaccessibility. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine and, occasionally, the large intestine. The presented review aims to discuss the impact of in vitro digestion on the composition, bioaccessibility and antioxidant activity of food polyphenols. Additionally, we consider the influence of pH on antioxidant changes in the aforementioned substances.
Collapse
Affiliation(s)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Dominika Nowakowska
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland;
| | - Arkadiusz Matwijczuk
- Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
34
|
|