1
|
Bentoumi H, Bouzina A, Amira A, Sekiou O, Chohra D, Ferchichi L, Zerrouki R, Aouf NE. Theoretical investigations of some isolated compounds from Calophyllum flavoramulum as potential antioxidant agents and inhibitors of AGEs. J Biomol Struct Dyn 2024:1-27. [PMID: 39568387 DOI: 10.1080/07391102.2024.2428375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/01/2024] [Indexed: 11/22/2024]
Abstract
In this paper, we have attempted a theoretical calculation of some plant-isolated compounds as potential inhibitors of oxidative stress and Advanced Glycation Endproducts (AGEs). Herein, theoretical reactivity indices based on the CDFT theory were computed to explore the reactivity of five isolated products from Calophyllum flavoramulum. Global reactivity indices based on HOMO and LUMO energy such as electronic chemical potential, hardness, electrophilicity and the local reactivity descriptors Parr function, molecular electrostatic potentials(MEP), electrostatic potential (ESP) and thermodynamic parameters for the studied compounds are computed and discussed using DFT method and two functionals B3LYP and CAM-B3LYP with 6-31 G(d,p) basis set. The free radical scavenging activity mechanisms (HAT, SET-PT, and SPLET) of some of the isolated products with DPPH are also presented in this work. SET-PT mechanism of the antiradical activity is found to be thermodynamically favorable. Furthermore, a molecular docking study with RAGE receptor and AtGSTF2 enzyme was conducted, in which flavonoids 4 and 5 show a low binding affinity with -8.42 and -10.49 kcal/mol for RAGE, -8.67 and -9.00 kcal/mol for AtGSTF2. After the encouraging outcomes from the molecular docking study, the 4-AtGSTF2 and 5-RAGE complex were subjected to 200 ns molecular dynamics simulation using Desmond, where both studied systems exhibited remarkable stability throughout the 200 ns simulations. Also, the MM-GBSA method was measured by calculating the binding free energy using the individual energy components. Finally, the ADMET predictions were assessed to anticipate the behavior of a drug candidate within the human body.
Collapse
Affiliation(s)
- Houria Bentoumi
- Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Aïcha Amira
- Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
- National Higher School of Technology and Engineering, Annaba, Algeria
| | - Omar Sekiou
- Environmental Research Center (CRE), Annaba, Algeria
| | - Djawhara Chohra
- Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Loubna Ferchichi
- Laboratory of Synthesis and Organic Biocatalysis (LSOB), Phytochemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Rachida Zerrouki
- Laboratory of Agroresources, Biomolecules and Chemistry for Health Innovation (LABCiS), Faculty of Science and Technology, University of Limoges, Limoges, France
| | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry (LAOC), Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
2
|
Rahman SS, Klamrak A, Nopkuesuk N, Nabnueangsap J, Janpan P, Choowongkomon K, Daduang J, Daduang S. Impacts of Plu kaow ( Houttuynia cordata Thunb.) Ethanolic Extract on Diabetes and Dyslipidemia in STZ Induced Diabetic Rats: Phytochemical Profiling, Cheminformatics Analyses, and Molecular Docking Studies. Antioxidants (Basel) 2024; 13:1064. [PMID: 39334723 PMCID: PMC11428413 DOI: 10.3390/antiox13091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) ethanolic extract (PK) in streptozotocin (STZ) induced diabetic rats, focusing on its molecular mechanisms. Diabetes was induced in fasting Long Evans rats using streptozotocin (65 mg/kg b. w.), with glibenclamide (5 mg/kg/day) used as the standard experimental drug. The treated groups received oral supplementation of PK (500 mg/kg/day) for 28 days. The study evaluated blood glucose levels, lipid status, body weight, liver, kidney, and heart function biomarkers, antioxidant activity, and histological examination of various organs. Additionally, untargeted metabolomics, cheminformatics, and molecular docking were employed to elucidate the probable mechanisms of action of PK. Based on metabolomic profiling data, the PK was found to contain various putative antidiabetic agents such as kaempferol 7-neohesperidoside, isochlorogenic acid C, rutin, datiscin, and diosmin and they have been proposed to significantly (p < 0.001) reduce blood glucose levels and modulated hyperlipidemia. PK also improved the tested liver, kidney, and heart function biomarkers and reversed damage to normal pancreatic, liver, kidney, and heart cells in histological analysis. In conclusion, PK shows promise as a potential treatment or management option for diabetes and hyperlipidemia, as well as their associated complications in diabetic rats.
Collapse
Affiliation(s)
- Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit Rev Food Sci Nutr 2024:1-19. [DOI: 10.1080/10408398.2024.2387765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Lu G, Pan F, Li X, Zhu Z, Zhao L, Wu Y, Tian W, Peng W, Liu J. Virtual screening strategy for anti-DPP-IV natural flavonoid derivatives based on machine learning. J Biomol Struct Dyn 2024; 42:6645-6659. [PMID: 37489054 DOI: 10.1080/07391102.2023.2237594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Flavonoids, especially their inhibitory effect on DPP-IV activity, have been widely recognized for their antidiabetic effects. However, the variety of natural flavonoid derivatives is very rich, and even subtle structural differences can lead to several orders of magnitude differences in their inhibitory activities against DPP-IV, which makes it challenging to find novel and potent anti-DPP-IV flavonoid derivatives experimentally. Therefore, there is an urgent need to develop an efficient screening pipeline that targets active natural products. Here, we propose a fusion strategy based on a QSAR model, and to simplify this process, it was applied to the discovery of flavonoid derivatives with potent anti-DPP-IV activity. First, the high-quality QSAR model (R test 2 = 0.816, MAEtest = 0.14, MSEtest = 0.026) was composed of seven key molecular property parameters, which were constructed with the genetic algorithm (GA) and passed the leave-one-out cross-validation evaluation. A total of 1,668 flavonoid derivatives were obtained from the natural product enriched by NPCD based on molecular fingerprint similarity (> 0.8). Further, the enriched flavonoid derivatives were further predicted and screened using the QED score combined with the QSAR model, and a total of 33 flavonoid derivatives (IC50pre < 6.5 μM) were found. Subsequently, three flavonoid derivatives (5,7,3',5'-tetrahydroxyflavone, 3,7-dihydroxy-5,3',4'-trimethoxyflavone, and 5,7,2',5'-tetrahydroxyflavone) with highly effective anti-DPP-IV activity were obtained by ADMET analysis. Finally, the DPP-IV inhibitory potential of these three flavonoid derivatives was verified by 100 ns MD simulation and MM/PB(GB)SA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaotong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Keng JW, Lee SK, Sang SH, Liew KB, Teo SS, Mossadeq WMSM, Chow SC, Akowuah GA, Lee SK, Mai CW, Chew YL. Cassia alata and Its Phytochemicals: A Promising Natural Strategy in Wound Recovery. SCI 2024; 6:34. [DOI: 10.3390/sci6020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
Cassia alata, a traditional herb with a global presence, is renowned for its anti-inflammatory, antibacterial, and antifungal properties, making it a go-to remedy for skin ailments. While it has demonstrated wound healing capabilities in both in vitro and in vivo studies, the precise mechanisms remain elusive. This review aims to highlight its key phytochemicals, their effects, and the mechanism of action. The compounds that have been reviewed and discussed include kaempferol, apigenin, quercetin, rhein, and rutin. These polyphenols play important roles in normal and impaired wound healing processes, encompassing hemostasis, inflammation, proliferation, and tissue remodeling.
Collapse
Affiliation(s)
- Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kai-Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, Malaysia
| | - Swee-Sen Teo
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Sek-Chuen Chow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150, Malaysia
| | - Gabriel Akyirem Akowuah
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Wesołowska O, Duda-Madej A, Błaszczyk M, Środa-Pomianek K, Kozłowska J, Anioł M. Interaction of selected alkoxy naringenin oximes with model and bacterial membranes. Biomed Pharmacother 2024; 174:116581. [PMID: 38636394 DOI: 10.1016/j.biopha.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 μg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland.
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Poland
| | - Maria Błaszczyk
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Joanna Kozłowska
- Department of Biocatalysis and Food Chemistry, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mirosław Anioł
- Department of Biocatalysis and Food Chemistry, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
8
|
Singhal S, Manikrao Patil V, Verma S, Masand N. Recent advances and structure-activity relationship studies of DPP-4 inhibitors as anti-diabetic agents. Bioorg Chem 2024; 146:107277. [PMID: 38493634 DOI: 10.1016/j.bioorg.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi NCR, Ghaziabad, Uttar Pradesh, India
| | - Vaishali Manikrao Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India; Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Saroj Verma
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
9
|
Bai X, Zhao X, Liu K, Yang X, He Q, Gao Y, Li W, Han W. Mulberry Leaf Compounds and Gut Microbiota in Alzheimer's Disease and Diabetes: A Study Using Network Pharmacology, Molecular Dynamics Simulation, and Cellular Assays. Int J Mol Sci 2024; 25:4062. [PMID: 38612872 PMCID: PMC11012793 DOI: 10.3390/ijms25074062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 μM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Xinyi Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| |
Collapse
|
10
|
Bai L, Deng Z, Xu M, Zhang Z, Guo G, Xue X, Wang S, Yang J, Xia Z. CETSA-MS-based target profiling of anti-aging natural compound quercetin. Eur J Med Chem 2024; 267:116203. [PMID: 38342014 DOI: 10.1016/j.ejmech.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE This study aimed to profile protein targets of quercetin at the proteome level. METHODS A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- Lin Bai
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengfei Xu
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhehao Zhang
- Department of Biochemistry, Faculty of Life Science, Faculty of Natural Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Guangyu Guo
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinli Xue
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shaochi Wang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Rocha S, Amaro A, Ferreira-Junior MD, Proença C, Silva AMS, Costa VM, Oliveira S, Fonseca DA, Silva S, Corvo ML, Freitas M, Matafome P, Fernandes E. Melanoxetin: A Hydroxylated Flavonoid Attenuates Oxidative Stress and Modulates Insulin Resistance and Glycation Pathways in an Animal Model of Type 2 Diabetes Mellitus. Pharmaceutics 2024; 16:261. [PMID: 38399315 PMCID: PMC10892797 DOI: 10.3390/pharmaceutics16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes mellitus (DM) continues to escalate, necessitating innovative therapeutic approaches that target distinct pathways and address DM complications. Flavonoids have been shown to possess several pharmacological activities that are important for DM. This study aimed to evaluate the in vivo effects of the flavonoid melanoxetin using Goto-Kakizaki rats. Over a period of 14 days, melanoxetin was administered subcutaneously to investigate its antioxidant, anti-inflammatory, and antidiabetic properties. The results show that melanoxetin reduced insulin resistance in adipose tissue by targeting protein tyrosine phosphatase 1B. Additionally, melanoxetin counteracted oxidative stress by reducing nitrotyrosine levels and modulating superoxide dismutase 1 and hemeoxygenase in adipose tissue and decreasing methylglyoxal-derived hydroimidazolone (MG-H1), a key advanced glycation end product (AGE) implicated in DM-related complications. Moreover, the glyoxalase 1 expression decreased in both the liver and the heart, correlating with reduced AGE levels, particularly MG-H1 in the heart. Melanoxetin also demonstrated anti-inflammatory effects by reducing serum prostaglandin E2 levels, and increasing the antioxidant status of the aorta wall through enhanced acetylcholine-dependent relaxation in the presence of ascorbic acid. These findings provide valuable insights into melanoxetin's therapeutic potential in targeting multiple pathways involved in type 2 DM, particularly in mitigating oxidative stress and glycation.
Collapse
Affiliation(s)
- Sónia Rocha
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Marcos D. Ferreira-Junior
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil
| | - Carina Proença
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Artur M. S. Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vera M. Costa
- Research Unit on Applied Molecular Biosciences (UCIBIO), Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Sara Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Diogo A. Fonseca
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sónia Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Marisa Freitas
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| | - Eduarda Fernandes
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| |
Collapse
|
12
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang L, Wang Q, Zhao Y, Ge J, He D. Phenolic Profiles, Antioxidant, and Hypoglycemic Activities of Ribes meyeri Fruits. Foods 2023; 12:2406. [PMID: 37372617 DOI: 10.3390/foods12122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Ribes meyeri is a Ribes genus in the Saxifragaceae family, which is used as both medicine and food. However, the active components and biological activities of R. meyeri fruits are still unknown. In this paper, the phenolic components and their antioxidant and hypoglycemic activities of R. meyeri fruits were studied. Firstly, a total of 42 phenolic components of R. meyeri fruits, including 26 anthocyanins, 9 flavonoids, and 7 phenolic acids, were tentatively identified using HPLC-QTOF-MS/MS, and the main four anthocyanins were quantified using UPLC-MS/MS. The result indicated that cyanidin-3-O-rutinoside is the main anthocyanin in the R. meyeri fruits. The anthocyanin fraction of R. meyeri fruits exhibited significant inhibitory activity on α-amylase and α-glucosidase. The anthocyanin fraction from R. meyeri fruits significantly increased the glucose uptake of 3T3-L1 adipocytes. This is the first study of a qualitative and quantitative analysis of the phenolics of R. meyeri fruits.
Collapse
Affiliation(s)
- Le Zhang
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Qiang Wang
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Yayun Zhao
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Juan Ge
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Dajun He
- College of Life Science, Shihezi University, Shihezi 832003, China
- Analysis and Testing Center, Shihezi University, Shihezi 832003, China
| |
Collapse
|
15
|
In Silico Study of Mangostin Compounds and Its Derivatives as Inhibitors of α-Glucosidase Enzymes for Anti-Diabetic Studies. BIOLOGY 2022; 11:biology11121837. [PMID: 36552346 PMCID: PMC9775444 DOI: 10.3390/biology11121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Diabetes is a chronic disease with a high mortality rate worldwide and can cause other diseases such as kidney damage, narrowing of blood vessels, and heart disease. The concomitant use of drugs such as metformin, sulfonylurea, miglitol, and acarbose may cause side effects with long-term administration. Therefore, natural ingredients are the best choice, considering that their long-term side effects are not significant. One of the compounds that can be used as a candidate antidiabetic is mangostin; however, information on the molecular mechanism needs to be further analyzed through molecular docking, simulating molecular dynamics, and testing the in silico antidiabetic potential. This study focused on modeling the protein structure, molecular docking, and molecular dynamics simulations and analyses. This process produces RMSD values, free energies, and intermolecular hydrogen bonding. Based on the analysis results, all molecular dynamics simulations can occur under physiological conditions, and γ-mangostin is the best among the test compounds.
Collapse
|
16
|
Mingrone G, Castagneto-Gissey L, Bornstein SR. New Horizons: Emerging Antidiabetic Medications. J Clin Endocrinol Metab 2022; 107:e4333-e4340. [PMID: 36106900 DOI: 10.1210/clinem/dgac499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 02/13/2023]
Abstract
Over the past century, since the discovery of insulin, the therapeutic offer for diabetes has grown exponentially, in particular for type 2 diabetes (T2D). However, the drugs in the diabetes pipeline are even more promising because of their impressive antihyperglycemic effects coupled with remarkable weight loss. An ideal medication for T2D should target not only hyperglycemia but also insulin resistance and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and the new class of GLP1 and gastric inhibitory polypeptide dual RAs counteract 2 of these metabolic defects of T2D, hyperglycemia and obesity, with stunning results that are similar to the effects of metabolic surgery. An important role of antidiabetic medications is to reduce the risk and improve the outcome of cardiovascular diseases, including coronary artery disease and heart failure with reduced or preserved ejection fraction, as well as diabetic nephropathy, as shown by SGLT2 inhibitors. This review summarizes the main drugs currently under development for the treatment of type 1 diabetes and T2D, highlighting their strengths and side effects.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome 00169, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00169, Italy
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| | | | - Stefan R Bornstein
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
17
|
Bai X, Fan W, Luo Y, Liu Y, Zhang Y, Liao X. Fast Screening of Protein Tyrosine Phosphatase 1B Inhibitor from Salvia miltiorrhiza Bge by Cell Display-Based Ligand Fishing. Molecules 2022; 27:molecules27227896. [PMID: 36431993 PMCID: PMC9693971 DOI: 10.3390/molecules27227896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bge is a medicinal plant (Chinese name "Danshen") widely used for the treatment of hyperglycemia in traditional Chinese medicine. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a potential target for insulin sensitizing for the treatment of diabetes. In this work, PTP1B was displayed at the surface of E. coli cells (EC-PTP1B) to be used as a bait for fishing of the enzyme's inhibitors present in the aqueous extract of S. miltiorrhiza. Salvianolic acid B, a polyphenolic compound, was fished out by EC-PTP1B, which was found to inhibit PTP1B with an IC50 value of 23.35 µM. The inhibitory mechanism of salvianolic acid B was further investigated by enzyme kinetic experiments and molecular docking, indicating salvianolic acid B was a non-competitive inhibitor for PTP1B (with Ki and Kis values of 31.71 µM and 20.08 µM, respectively) and its binding energy was -7.89 kcal/mol. It is interesting that in the comparative work using a traditional ligand fishing bait of PTP1B-immobilized magnetic nanoparticles (MNPs-PTP1B), no ligands were extracted at all. This study not only discovered a new PTP1B inhibitor from S. miltiorrhiza which is significant to understand the chemical basis for the hypoglycemic activity of this plant, but also indicated the effectiveness of cell display-based ligand fishing in screening of active compounds from complex herbal extracts.
Collapse
Affiliation(s)
- Xiaolin Bai
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Fan
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Luo
- Department of Molecular Science, The University of Western Australia, Perth, WA 6000, Australia
| | - Yipei Liu
- Polus International College, Chengdu 610103, China
| | - Yongmei Zhang
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610041, China
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-28-82890756 (Y.Z.); +86-28-828290402 (X.L.)
| | - Xun Liao
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610041, China
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-28-82890756 (Y.Z.); +86-28-828290402 (X.L.)
| |
Collapse
|
18
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
19
|
Melatonin Alleviates PM 2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8688643. [PMID: 35720187 PMCID: PMC9200552 DOI: 10.1155/2022/8688643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Background Exposure to fine particulate matter (PM2.5) is associated with the risk of developing metabolic-associated fatty liver disease (MAFLD). Melatonin is the main secreted product of the pineal gland and has been reported to prevent hepatic lipid metabolism disorders. However, it remains uncertain whether melatonin could protect against PM2.5-induced MAFLD. Methods and Results The purpose of our study was to investigate the mitigating effects of melatonin on hepatic fatty degeneration accelerated by PM2.5 in vivo and in vitro. Histopathological analysis and ultrastructural images showed that PM2.5 induced hepatic steatosis and lipid vacuolation in ApoE−/− mice, which could be effectively alleviated by melatonin administration. Increased ROS production and decreased expression of antioxidant enzymes were detected in the PM2.5-treated group, whereas melatonin showed recovery effects after PM2.5-induced oxidative damage in both the liver and L02 cells. Further investigation revealed that PM2.5 induced oxidative stress to activate PTP1B, which in turn had a positive feedback regulation effect on ROS release. When a PTP1B inhibitor or melatonin was administered, SP1/SREBP-1 signalling was effectively suppressed, while Nrf2/Keap1 signalling was activated in the PM2.5-treated groups. Conclusion Our study is the first to show that melatonin alleviates the disturbance of PM2.5-triggered hepatic steatosis and liver damage by regulating the ROS-mediated PTP1B and Nrf2 signalling pathways in ApoE−/− mice. These results suggest that melatonin administration might be a prospective therapy for the prevention and treatment of MAFLD associated with air pollution.
Collapse
|
20
|
Pan J, Zhang Q, Zhang C, Yang W, Liu H, Lv Z, Liu J, Jiao Z. Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism. Front Nutr 2022; 9:892426. [PMID: 35634373 PMCID: PMC9134086 DOI: 10.3389/fnut.2022.892426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
With the aim to establish a structure-inhibitory activity relationship of flavonoids against dipeptidyl peptidase-4 (DPP-4) and elucidate the interaction mechanisms between them, a pannel of 70 structurally diverse flavonoids was used to evaluate their inhibitory activities against DPP-4, among which myricetin, hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin showed higher inhibitory activities in a concentration-dependent manner. Structure-activity relationship analysis revealed that introducing hydroxyl groups to C3', C4', and C6 of the flavonoid structure was beneficial to improving the inhibitory efficacy against DPP-4, whereas the hydroxylation at position 3 of ring C in the flavonoid structure was unfavorable for the inhibition. Besides, the methylation of the hydroxyl groups at C3', C4', and C7 of the flavonoid structure tended to lower the inhibitory activity against DPP-4, and the 2,3-double bond and 4-carbonyl group on ring C of the flavonoid structure was essential for the inhibition. Glycosylation affected the inhibitory activity diversely, depending on the structure of flavonoid aglycone, type of glycoside, as well as the position of substitution. Inhibition kinetic analysis suggested that myricetin reversibly inhibited DPP-4 in a non-competitive mode, whereas hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin all reversibly inhibited DPP-4 in a mixed type. Moreover, the fluorescence quenching analysis indicated that all the five flavonoid compounds could effectively quench the intrinsic fluorescence of DPP-4 by spontaneously binding with it to form an unstable complex. Hydrogen bonds and van der Waals were the predominant forces to maintain the complex of myricetin with DPP-4, and electrostatic forces might play an important role in stabilizing the complexes of the remaining four flavonoids with DPP-4. The binding of the tested flavonoids to DPP-4 could also induce the conformation change of DPP-4 and thus led to inhibition on the enzyme. Molecular docking simulation further ascertained the binding interactions between DPP-4 and the selected five flavonoids, among which hyperoside, narcissoside, cyaniding 3-O-glucoside, and isoliquiritigenin inserted into the active site cavity of DPP-4 and interacted with the key amino acid residues of the active site, whereas the binding site of myricetin was located in a minor cavity close to the active pockets of DPP-4.
Collapse
|
21
|
Li Z, Tian J, Cheng Z, Teng W, Zhang W, Bao Y, Wang Y, Song B, Chen Y, Li B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 63:7878-7895. [PMID: 35333674 DOI: 10.1080/10408398.2022.2055526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated interrelationships responsible for initiating its pathogenesis. Novel strategies for the treatment of this devastating disease have attracted increasing attention worldwide. Anthocyanins are bioactive compounds that are widely distributed in the plant kingdom, and multiple studies have elucidated their beneficial role in preventing and managing T2DM. This review summarizes and comments on the hypoglycemic actions of anthocyanins from the perspective of molecular mechanisms and different target-related signaling pathways in vitro, in vivo, and clinical trials. Anthocyanins can ameliorate T2DM by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 (GLUT4) translocation, suppressing the effectiveness of dipeptidyl peptidase IV (DPP-IV), promoting glucagon-like peptide-1 (GLP-1) secretion, inhibiting protein tyrosine phosphatase 1B (PTP1B) overexpression, and interacting with sodium-glucose co-transporter (SGLT) to delay glucose absorption in various organs and tissues. In summary, anthocyanin is a promising and practical small molecule that can hyperglycemic symptoms and accompanying complications suffered by patients with diabetes. However, rational and potent doses for daily intake and clinical studies are required in the future.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Wei Teng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Rocha S, Aniceto N, Guedes RC, Albuquerque HMT, Silva VLM, Silva AMS, Corvo ML, Fernandes E, Freitas M. An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles. Nutrients 2022; 14:nu14020306. [PMID: 35057487 PMCID: PMC8781192 DOI: 10.3390/nu14020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Natália Aniceto
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Rita C. Guedes
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Maria Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Marisa Freitas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
- Correspondence: ; Tel.: +351-220-428-664
| |
Collapse
|