1
|
Dong F, Wang G, Feng X, Gong C, Zheng Z, Chen Y, Huo Y, Zhang Y, Wang H. Investigation and Analysis of Staphylococcus aureus Contamination in Food in Yantai City, China: Based on a 14-Year Continuous Monitoring. Foodborne Pathog Dis 2025. [PMID: 39982751 DOI: 10.1089/fpd.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus aureus is a foodborne zoonotic pathogen that threatens food safety and public health. However, few people have conducted long-term and systematic studies on S. aureus contamination in food in Yantai City. To investigate the contamination situation of S. aureus in food and improve the ability of early warning and control of foodborne diseases, a total of 2384 samples from 17 categories were collected from 13 monitoring points in Yantai City, from 2010 to 2023. Forty-four samples were positively detected for S. aureus, with a detection rate of 1.85% (44/2384). The detection rate of S. aureus was highest in Zhifu District (4.12%), followed by Penglai District (2.45%), Zhaoyuan District (2.37%), Kaifa District (2.19%), and Longkou District (1.98%). Positive detection rates were higher in frozen rice and flour products at 8.82% (6/68), quick-frozen dishes at 5.56% (1/18), aquatic products at 4.05% (3/74), and meat and meat products at 3.55% (27/760). Positive detection rates in samples from the first, second, third, and fourth quarters were 0% (0/44), 2.21% (20/906), 2.13% (22/1033), and 0.50% (2/401), respectively. Positive detection rates in bulk and prepackaged samples were 2.33% (36/1546) and 0.95% (8/838), respectively, with statistically significant differences (χ2 = 5.66, p < 0.05). Positive detection rates were significantly different for samples collected from different sampling stages, of which at production and processing stages was 7.78% (20/257), catering stages 1.38% (10/727), and distribution stages 1% (14/1400) (χ2 = 56.41, p < 0.05). Frozen rice and flour products, quick-frozen dishes, aquatic products, and meat and meat products are the main food products contaminated with S. aureus, and the resulting secondary contamination is a hidden danger for the occurrence of foodborne diseases, which should be given sufficient attention.
Collapse
Affiliation(s)
- Fengguang Dong
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Guiqiang Wang
- Office of General Administration (Department of Audit), Yantai Center for Disease Control and Prevention, Yantai, China
| | - Xueying Feng
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Chunbo Gong
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Zhong Zheng
- Office of General Administration (Department of Audit), Yantai Center for Disease Control and Prevention, Yantai, China
| | - Youxia Chen
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yapeng Huo
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yiyi Zhang
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Hongtao Wang
- Office of General Administration (Department of Audit), Yantai Center for Disease Control and Prevention, Yantai, China
| |
Collapse
|
2
|
Jin R, Wei G, Lin R, Lin W, Aweya JJ, Liang D, Weng W, Yang S. Efficacy of Larimichthys crocea TASOR protein-derived peptide FAM286 against Staphylococcus aureus. Curr Res Food Sci 2025; 10:100998. [PMID: 39995466 PMCID: PMC11849189 DOI: 10.1016/j.crfs.2025.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a major foodborne pathogen, could lead cause of intestinal infections in humans. Antimicrobial peptides, as emerging antimicrobial agents, are gradually replacing traditional agents due to their highly effective and safe antimicrobial activity. In this study, a novel peptide, designated as FAM286, was identified from TASOR protein of Larimichthys crocea, which had a strong antimicrobial activity against S. aureus with a minimum bactericidal concentration (MBC) of 3.9 μg/mL and completed bacteria killing by treatment for 1.5 h. The FAM286 could increase the permeability and disrupt the integrity of cell membranes. The cell showed aggregation phenomenon and entered the apoptosis stage. In addition, the non-bactericidal concentration of FAM286 could effectively inhibit the formation of biofilm and remove mature biofilm. Molecular docking experiments further verified the binding sites of FAM286 to S. aureus biofilm proteins SarA, AgrA, and Hld. FAM286 could also bind the bacterial DNA in an embedded manner, disrupting the structure of DNA and leading to the death of bacteria. This study comprehensively evaluated the antimicrobial mechanism of the FAM286 against S. aureus and provided a theoretical basis for the prevention and control of S. aureus.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Guanglei Wei
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Wenfeng Lin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| |
Collapse
|
3
|
Shen Y, Bai X, Wang J, Zhou X, Meng R, Guo N. Inhibitory Effect of Non-Saccharomyces Starmerella bacillaris CC-PT4 Isolated from Grape on MRSA Growth and Biofilm. Probiotics Antimicrob Proteins 2025; 17:227-239. [PMID: 37639210 DOI: 10.1007/s12602-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious pathogen with biofilm-forming and drug-resistant properties that make it difficult to eradicate. In this study, the inhibition of MRSA (ATCC 43300) by Starmerella bacillaris CC-PT4 (CGMCC No. 23573) was evaluated. The results showed that the inhibition of MRSA growth and biofilm was caused by S. bacillaris CC-PT4 cell-free supernatant (CFS). The CFS of S. bacillaris CC PT4 at different times can effectively inhibit the formation of MRSA biofilm, remove the preformed biofilm, and down-regulate the related genes that promote the formation of biofilm. Afterwards, untargeted metabolomics was performed to analyze the CFS of S. bacillaris CC-PT4. Several molecules with antibacterial and inhibitory biofilm effects from the CFS were found, one of which, 2-amino-1-phenylethanol (APE), has not been reported to have antiMRSA ability before. In this study, molecular docking analysis and in vitro experiments were used to verify the function of APE to inhibit MRSA. These results indicate that S. bacillaris CC-PT4 CFS can effectively inhibit MRSA which has potential application value in controlling MRSA.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Jiaxi Wang
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Xiran Zhou
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Rizeng Meng
- Technology Center of Changchun Customs, 130062, Changchun, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China.
| |
Collapse
|
4
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
5
|
Ran W, Yi P, Jiang L, Yu Y, Zhong K, Wu Y, Gao H. Antibiofilm mechanism of 2R,3R-dihydromyricetin by targeting sortase A and its application against Staphylococcus aureus adhesion on eggshell. Int J Food Microbiol 2025; 426:110925. [PMID: 39366090 DOI: 10.1016/j.ijfoodmicro.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Biofilm formation of Staphylococcus aureus in food processing environments raises significant safety concerns, necessitating the development of new antibiofilm approaches for controlling S. aureus contamination. This study aimed to elucidate the antibiofilm mechanism of 2R,3R-dihydromyricetin (DMY), a natural flavonoid, against S. aureus and evaluate its efficacy in reducing bacterial adhesion to eggshell. The results revealed that DMY was a potent inhibitor of S. aureus sortase A (SrtA) with an IC50 of 73.43 μM, preventing bacterial adhesion to fibrinogen and subsequent biofilm formation. Fluorescence quenching assay and surface plasmon resonance analysis confirmed that DMY could directly bind to S. aureus SrtA. Notably, circular dichroism spectra demonstrated a conformational change in SrtA from α-helical to β-sheet structure upon DMY binding. Molecular dynamics simulation suggested that DMY bound to the catalytic pocket of S. aureus SrtA via hydrophobic interactions and hydrogen bonds. Furthermore, fluorescence microscopic observations further revealed that DMY attenuated the biofilm-related phenotype of SrtA by decreasing the anchoring of S. aureus protein A (SpA) onto cell wall. Importantly, pretreatment with 125 μg/mL DMY significantly reduced 1.14-1.75 log CFU/cm2 of S. aureus adhered on eggshells. Overall, these findings highlight how specific targeting of SrtA by DMY inhibits the attachment stages of biofilm development in S. aureus, making it a promising candidate for a novel disinfectant against this pathogen in the food industry.
Collapse
Affiliation(s)
- Wenyi Ran
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Peirui Yi
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ling Jiang
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yang Yu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Chingizova EA, Chingizov AR, Menchinskaya ES, Pislyagin EA, Kuzmich AS, Leshchenko EV, Borkunov GV, Guzhova IV, Aminin DL, Yurchenko EA. The influence of marine fungal meroterpenoid meroantarctine A toward HaCaT keratinocytes infected with Staphylococcus aureus. J Antibiot (Tokyo) 2024; 77:812-822. [PMID: 39256545 DOI: 10.1038/s41429-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
A new biological activity was discovered for marine fungal meroterpenoid meroantarctine A with unique 6/5/6/6 polycyclic system. It was found that meroantarctine A can significantly reduce biofilm formation by Staphylococcus aureus with an IC50 of 9.2 µM via inhibition of sortase A activity. Co-cultivation of HaCaT keratinocytes with a S. aureus suspension was used as an in vitro model of skin infection. Treatment of S. aureus-infected HaCaT cells with meroantarctine A at 10 µM caused a reduction in the production of TNF-α, IL-18, NO, and ROS, as well as LDH release and caspase 1 activation in these cells and, finally, recovered the proliferation and migration of HaCaT cells in an in vitro wound healing assay up to the control level. Thus, meroantarctine A is a new promising antibiofilm compound which can effective against S. aureus caused skin infection.
Collapse
Affiliation(s)
- Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia.
| | - Artur R Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | | | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Aleksandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Elena V Leshchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | - Gleb V Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
| | | | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022, Vladivostok, Russia.
| |
Collapse
|
7
|
Ma X, Ma J, Liu J, Hao H, Hou H, Zhang G. Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef. Foods 2024; 13:3362. [PMID: 39517145 PMCID: PMC11544944 DOI: 10.3390/foods13213362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to explore the mechanism by which phenethyl isothiocyanate (PEITC) inhibited the adhesion and biofilm formation of Staphylococcus aureus (S. aureus). PEITC exhibited antimicrobial efficacy against S. aureus, demonstrating a minimum inhibition concentration (MIC) of 1 mmol/L. PEITC exerted its antibacterial effect by disrupting cell membrane integrity, and it decreased total adenosine triphosphate (ATP) production after 1 and 4 h treatment. PEITC at 0.5 mmol/L increased the level of intracellular reactive oxygen species (ROS) by 26.39% compared to control. The mature biofilm of S. aureus was destroyed by 86.4% after treatment with PEITC for 24 h. Adhesion tests revealed that PEITC at 0.5 mmol/L reduced 44.51% of the S. aureus that adhered to NCM460 cells. Furthermore, at the genetic level, PEITC significantly downregulated the related genes by 31.26% to 97.04%, including agrB, agrD, isdA, ebh, luxS, fnbA, and icaR. Moreover, PEITC markedly inhibited S. aureus proliferation in beef preserved at temperatures of 25 and 4 °C, respectively. In summary, the present study suggests that PEITC effectively inhibits the adhesion and biofilm formation of S. aureus by affecting the relevant genes of S. aureus and holds promise for microbial management in meat products.
Collapse
Affiliation(s)
- Xiaojing Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Jinle Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| |
Collapse
|
8
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Li S, Wang Y, Xu G, Xu Y, Fu C, Zhao Q, Xu L, Jia X, Zhang Y, Liu Y, Qiao J. The combination of allicin with domiphen is effective against microbial biofilm formation. Front Microbiol 2024; 15:1341316. [PMID: 38873153 PMCID: PMC11169630 DOI: 10.3389/fmicb.2024.1341316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Microorganisms in biofilms are particularly difficult to control because of their increased survival and antibiotic resistance. Allicin and domiphen were employed to inhibit the microbial growth and biofilm formation of Staphylococcus aureus, Escherichia coli, and Candida albicans strains. Methods Broth microdilution method and checkerboard assay were conducted to determine the efficacy of allicin combined with domiphen against S. aureus, E. coli, and C. albicans. Microbial biofilm formation was measured using the crystal violet staining method and fluorescence microscopy. And the total viable count of the biofilm cells on material surface after the treatment with antimicrobial reagents was calculated with the plate count technique. Results The two drugs showed synergistic effects against the pathogens with a fractional bactericidal concentration of less than 0.38. The combination of 64 μg/mL allicin with 1 μg/mL domiphen dispersed over 50% of the biofilm mass of S. aureus, E. coli, and C. albicans. In addition, the drug combination reduced the total viable counts of E. coli and C. albicans biofilm cells on stainless steel and polyethylene surfaces by more than 102 CFU/mL. Conclusion The combination of allicin and domiphen is an effective strategy for efficiently decreasing biofilms formation on various industrial materials surfaces.
Collapse
Affiliation(s)
- Shang Li
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yutong Wang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Geweirong Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Cuiyan Fu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Quanlin Zhao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Linjie Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinzhou Jia
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaju Qiao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Peran JE, Salvador-Reyes LA. Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidis. Front Pharmacol 2024; 15:1379643. [PMID: 38846101 PMCID: PMC11153713 DOI: 10.3389/fphar.2024.1379643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon's transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
11
|
Qiao J, Hu A, Zhou H, Lu Z, Meng F, Shi C, Bie X. Drug-loaded lipid nanoparticles improve the removal rates of the Staphylococcus aureus biofilm. Biotechnol J 2024; 19:e2300159. [PMID: 38403400 DOI: 10.1002/biot.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Biofilms of the foodborne pathogen Staphylococcus aureus show improved resistance to antibiotics and are difficult to eliminate. To enhance antibacteria and biofilm dispersion via extracellular matrix diffusion, a new lipid nanoparticle was prepared, which employed a mixture of phospholipids and a 0.8% surfactin shell. In the lipid nanoparticle, 31.56 μg mL-1 of erythromycin was encapsulated. The lipid nanoparticle size was approximately 52 nm and the zeta-potential was -67 mV, which was measured using a Marvin laser particle size analyzer. In addition, lipid nanoparticles significantly dispersed the biofilms of S. aureus W1, CICC22942, and CICC 10788 on the surface of stainless steel, reducing the total viable count of bacteria in the biofilms by 103 CFU mL-1 . In addition, the lipid nanoparticle can remove polysaccharides and protein components from the biofilm matrix. The results of laser confocal microscopy showed that the lipid nanoparticles effectively killed residual bacteria in the biofilms. Thus, to thoroughly eliminate biofilms on material surfaces in food factories to avoid repeated contamination, drug-lipid nanoparticles present a suitable method to achieve this.
Collapse
Affiliation(s)
- Jiaju Qiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Life Science, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Changzheng Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Er Raouan S, Delattre C, El Modafar C. Preparation of bioactive film based on chitosan and essential oils mixture for enhanced preservation of food products. Int J Biol Macromol 2024; 259:129396. [PMID: 38219942 DOI: 10.1016/j.ijbiomac.2024.129396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500 Paris, France.
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
13
|
Bai X, Chen X, Zhang D, Liu X, Li J. Targeted phytogenic compounds against Vibrio parahaemolyticus biofilms. Crit Rev Food Sci Nutr 2024:1-12. [PMID: 38189321 DOI: 10.1080/10408398.2023.2299949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As one of main culprit of seafood-associated human illness, Vibrio parahaemolyticus can readily accumulate on biotic or abiotic surfaces to form biofilms in the seafood processing environment. Biofilm formation on various surfaces can provide a protective barrier for viable bacterial cells that are resistant to most traditional bacteriostatic measures. This underscores the necessity and urgency of developing effective alternative strategies to control V. parahaemolyticus biofilms. Plants have always provided an extensive and infinite source of biologically active compounds for "green" antibiofilm agents. This review summarizes recent developments in promising multitargeted phytogenic compounds against V. parahaemolyticus biofilms. This review provides valuable insights into potential research targets that can be pursued further to identify potent natural antibiofilm agents in the food industry.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xiaoli Chen
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Defu Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuefei Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
14
|
Yakoup AY, Kamel AG, Elbermawy Y, Abdelsattar AS, El-Shibiny A. Characterization, antibacterial, and cytotoxic activities of silver nanoparticles using the whole biofilm layer as a macromolecule in biosynthesis. Sci Rep 2024; 14:364. [PMID: 38172225 PMCID: PMC10764356 DOI: 10.1038/s41598-023-50548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, multi-drug resistant (MDR) bacteria are responsible for a large number of infectious diseases that can be life-threatening. Globally, new approaches are targeted to solve this essential issue. This study aims to discover novel antibiotic alternatives by using the whole components of the biofilm layer as a macromolecule to synthesize silver nanoparticles (AgNPs) as a promising agent against MDR. In particular, the biosynthesized biofilm-AgNPs were characterized using UV-Vis spectroscopy, electron microscopes, Energy Dispersive X-ray (EDX), zeta sizer and potential while their effect on bacterial strains and normal cell lines was identified. Accordingly, biofilm-AgNPs have a lavender-colored solution, spherical shape, with a size range of 20-60 nm. Notably, they have inhibitory effects when used on various bacterial strains with concentrations ranging between 12.5 and 25 µg/mL. In addition, they have an effective synergistic effect when combined with phage ZCSE9 to inhibit and kill Salmonella enterica with a concentration of 3.1 µg/mL. In conclusion, this work presents a novel biosynthesis preparation of AgNPs using biofilm for antibacterial purposes to reduce the possible toxicity by reducing the MICs using phage ZCSE9.
Collapse
Affiliation(s)
- Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Yasmin Elbermawy
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
15
|
Martínez-Cifuentes M, Soto-Tapia E, Linares-Pipón C, Bradshaw B, Valenzuela-Hormazabal P, Ramírez D, Muñoz-Torres P, Parra C. Design of β-Keto Esters with Antibacterial Activity: Synthesis, In Vitro Evaluation, and Theoretical Assessment of Their Reactivity and Quorum-Sensing Inhibition Capacity. Pharmaceuticals (Basel) 2023; 16:1339. [PMID: 37895810 PMCID: PMC10610512 DOI: 10.3390/ph16101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
This work proposes the design of β-keto esters as antibacterial compounds. The design was based on the structure of the autoinducer of bacterial quorum sensing, N-(3-oxo-hexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). Eight β-keto ester analogues were synthesised with good yields and were spectroscopically characterised, showing that the compounds were only present in their β-keto ester tautomer form. We carried out a computational analysis of the reactivity and ADME (absorption, distribution, metabolism, and excretion) properties of the compounds as well as molecular docking and molecular dynamics calculations with the LasR and LuxS quorum-sensing (QS) proteins, which are involved in bacterial resistance to antibiotics. The results show that all the compounds exhibit reliable ADME properties and that only compound 7 can present electrophile toxicity. The theoretical reactivity study shows that compounds 6 and 8 present a differential local reactivity regarding the rest of the series. Compound 8 presents the most promising potential in terms of its ability to interact with the LasR and LuxS QS proteins efficiently according to its molecular docking and molecular dynamics calculations. An initial in vitro antimicrobial screening was performed against the human pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus aureus as well as the phytopathogenic bacteria Pseudomonas syringae and Agrobacterium tumefaciens. Compounds 6 and 8 exhibit the most promising results in the in vitro antimicrobial screening against the panel of bacteria studied.
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (E.S.-T.); (C.L.-P.)
| | - Emmanuel Soto-Tapia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (E.S.-T.); (C.L.-P.)
| | - Camila Linares-Pipón
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (E.S.-T.); (C.L.-P.)
| | - Ben Bradshaw
- Laboratori de Química Orgánica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain;
| | - Paulina Valenzuela-Hormazabal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Patricio Muñoz-Torres
- Laboratorio de Patología Vegetal y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile
| | - Claudio Parra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (E.S.-T.); (C.L.-P.)
| |
Collapse
|
16
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Delattre C, El Modafar C. Elaboration and general evaluation of chitosan-based films containing terpene alcohols-rich essential oils. World J Microbiol Biotechnol 2023; 39:146. [PMID: 37014476 DOI: 10.1007/s11274-023-03597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recently, the scientific community is interested in the synthesis of biodegradable and bioactive packaging to replace oil-based ones. Therefore, the present study aims to elaborate an active and biodegradable material using chitosan (CS-film) combined with pelargonium, tea tree, marjoram, and thyme essential oils (EOs), and then evaluate their different properties and biological activities. The obtained data showed an augmentation in CS-film thickness and opacity following the addition of EOs ranging from 17 ± 3 to 42 ± 2 μm and from 1.53 ± 0.04 to 2.67 ± 0.09, respectively. Furthermore, a significant decrease in the water vapor transmission rate and moisture content parameters was recorded as regards the treated CS-films. On the other hand, the treatment with EOs engenders random modifications in the physicochemical and mechanical characteristics of the material. Concerning the biological activities, the treated CS-films scavenged around 60% of DPPH radical while the control CS-film exhibited a negligible antioxidant activity. Finally, the CS-films containing pelargonium and thyme EOs exhibited the strongest antibiofilm-forming activity against Escherichia coli, Enterococcus hirae, Staphylococcus aureus, and Pseudomonas aeruginosa with values of inhibition greater than 70%. These encouraging results verify the effectiveness of CS-films containing EOs such as pelargonium and thyme EOs as biodegradable and bioactive packaging.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
17
|
Ran W, Yue Y, Long F, Zhong K, Bai J, Xiao Y, Bu Q, Huang Y, Wu Y, Gao H. Antibacterial Mechanism of 2R,3R-Dihydromyricetin Against Staphylococcus aureus: Deciphering Inhibitory Effect on Biofilm and Virulence Based on Transcriptomic and Proteomic Analyses. Foodborne Pathog Dis 2023; 20:90-99. [PMID: 36862127 DOI: 10.1089/fpd.2022.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Staphylococcus aureus is a major foodborne pathogen that leads to various diseases due to its biofilm and virulence factors. This study aimed to investigate the inhibitory effect of 2R,3R-dihydromyricetin (DMY), a natural flavonoid compound, on the biofilm formation and virulence of S. aureus, and to explore the mode of action using transcriptomic and proteomic analyses. Microscopic observation revealed that DMY could remarkably inhibit the biofilm formation by S. aureus, leading to a collapse on the biofilm architecture and a decrease in viability of biofilm cell. Moreover, the hemolytic activity of S. aureus was reduced to 32.7% after treatment with subinhibitory concentration of DMY (p < 0.01). Bioinformation analysis based on RNA-sequencing and proteomic profiling revealed that DMY induced 262 differentially expressed genes and 669 differentially expressed proteins (p < 0.05). Many downregulated genes and proteins related to surface proteins were involved in biofilm formation, including clumping factor A (ClfA), iron-regulated surface determinants (IsdA, IsdB, and IsdC), fibrinogen-binding proteins (FnbA, FnbB), and serine protease. Meanwhile, DMY regulated a wide range of genes and proteins enriched in bacterial pathogenesis, cell envelope, amino acid metabolism, purine and pyrimidine metabolism, and pyruvate metabolism. These findings suggest that DMY targets S. aureus through multifarious mechanisms, and especially prompt that interference of surface proteins in cell envelope would lead to attenuation of biofilm and virulence.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yuxi Yue
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Feiwu Long
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Kai Zhong
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinrong Bai
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yue Xiao
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Qian Bu
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yina Huang
- Department of Hygienic Toxicology and Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanping Wu
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hong Gao
- Department of Food Engineering, College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Song L, Yang H, Meng X, Su R, Cheng S, Wang H, Bai X, Guo D, Lü X, Xia X, Shi C. Inhibitory Effects of Trans-Cinnamaldehyde Against Pseudomonas aeruginosa Biofilm Formation. Foodborne Pathog Dis 2023; 20:47-58. [PMID: 36779942 DOI: 10.1089/fpd.2022.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Pseudomonas aeruginosa biofilm formation has been considered to be an important determinant of its pathogenicity in most infections. The antibiofilm activity of trans-cinnamaldehyde (TC) against P. aeruginosa was investigated in this study. Results demonstrated that the minimum inhibitory concentration (MIC) of TC against P. aeruginosa was 0.8 mg/mL, and subinhibitory concentrations (SICs) was 0.2 mg/mL and below. Crystal violet staining showed that TC at 0.05-0.2 mg/mL reduced biofilm biomass in 48 h in a concentration-dependent mode. The formation area of TC-treated biofilms was significantly declined (p < 0.01) on the glass slides observed by light microscopy. Field-emission scanning electron microscopy further demonstrated that TC destroyed the biofilm morphology and structure. Confocal laser scanning microscopic observed the dispersion of biofilms and the reduction of exopolysaccharides after TC treatment stained with concanavalin A (Con-A)-fluorescein isothiocyanate conjugate and Hoechst 33258. Meanwhile, TC caused a significant decrease (p < 0.01) in the component of polysaccharides, proteins, and DNA in extracellular polymeric substance. The swimming and swarming motility and quorum sensing of P. aeruginosa was also found to be significantly inhibited (p < 0.01) by TC at SICs. Furthermore, SICs of TC repressed the several genes transcription associated with biofilm formation as determined by real-time quantitative polymerase chain reaction. Overall, our findings suggest that TC could be applied as natural and safe antibiofilm agent to inhibit the biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Anti-biofilm activity of biochanin A against Staphylococcus aureus. Appl Microbiol Biotechnol 2023; 107:867-879. [PMID: 36585511 DOI: 10.1007/s00253-022-12350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Biofilm-forming Staphylococcus aureus can easily accumulate on various food contact surfaces which induce cross-contamination and are difficult to eliminate in the food industry. This study aimed to evaluate the anti-biofilm effects of natural product biochanin A against S. aureus. Results showed that biochanin A effectively eradicated established S. aureus biofilms on different food-contact materials. Fluorescence microscopic analyses suggested that biochanin A disintegrated the established biofilms by dissociate extracellular polymeric substance (EPS) in matrix. In addition, biochanin A at the sub-MIC concentration also effectively inhibited the biofilm formation by regulating the expression of biofilm-related genes (icaA, srtA, eno) and suppressing the release of EPS in biofilm matrix. Molecular docking also demonstrated that biochanin A conducted strong interactions with biofilm-related proteins (Ica A, Sortase A, and Enolase). These findings demonstrated that biochanin A has the potential to be developed as a potent agent against S. aureus biofilm in food industries. KEY POINTS: • Anti-biofilm effect of biochanin A against S. aureus was revealed for the first time. • Biofilm of S. aureus on various food-contact surfaces were efficiently eradicated. • Biochanin A prevented S. aureus biofilm formation via reducing EPS production.
Collapse
|
20
|
Mouhoub A, Er Raouan S, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, El Abed S, Delattre C, El Modafar C. The effect of essential oils mixture on chitosan-based film surface energy and antiadhesion activity against foodborne bacteria. World J Microbiol Biotechnol 2023; 39:77. [PMID: 36642748 DOI: 10.1007/s11274-023-03520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023]
Abstract
In the food sector, the formation of biofilms as a result of microbial adherence on food-grade surfaces causes a major problem resulting in significant economic losses. Thereby, this work aimed to elaborate a biodegradable film using chitosan (CS-film) and reinforce its antiadhesion activity by incorporating pelargonium, clove, thyme, and cinnamon essential oils (EOs). Firstly, the antibacterial activity of these EOs alone and combined against four foodborne bacteria were analyzed by the microdilution method. Synergism was observed in the case of EOs combination. Secondly, the physicochemical characteristics and antiadhesion behavior of the CS-films were assessed by the contact angle method and ESEM, respectively. Results revealed that the EOs mixture treatment impacted considerably the physicochemical characteristics of the CS-film and reduced its qualitative and quantitative hydrophobicity. Moreover, the treated CS-film showed a strong antiadhesion behavior against Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus with percentages of non-covered surface equal to 97.65 ± 1.43%, 98.76 ± 0.32%, 99.68 ± 0.28%, and 95.63 ± 1.32% respectively. From all these results, the CS-film treated with the mixture of EOs presents a great potential for application as surface coating and food packaging preventing microbial adhesion and thus, avoiding food contamination and spoilage.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Soumya El Abed
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.,Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
21
|
Yufang L, Shijun L, Kun Y, Rongxiang G, Xin Z, Yanan S, Aixiang H. Antibiofilm mechanism of a novel milk-derived antimicrobial peptide against Staphylococcus aureus by down regulating agr quorum sensing system. J Appl Microbiol 2022; 133:2198-2209. [PMID: 35661493 DOI: 10.1111/jam.15653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
AIMS Staphylococcus aureus has emerged as a serious threat to food safety owing to biofilm formation. The study aimed to examine antibiofilm mechanism of a novel milk-derived antimicrobial peptide BCp12 against it. METHODS AND RESULTS Anti-biofilm activity of BCp12 was studied by crystal violet staining, MTT assay, motility, SEM and CLSM. TMT proteome, real-time PCR, and molecular docking in silico were conducted to evaluate the mechanism of BCp12 against S. aureus biofilm. The results showed that BCp12 had significant anti-biofilm activity at 1×MIC and sub-MIC. BCp12 induced the dispersion of structure of S. aureus biofilm BCp12 inhibited the movement of S. aureus. A total of 703 proteins were down-regulated and 334 proteins were up-regulated after BCp12 treatment. The proteins (agrA, agrB, agrC, and psmβ) of the QS systems were down-regulated. Additionally, the expression of the agr-related genes, agrA, agrB, agrC, and psmβ were down-regulated. BCp12 was bound to the receptor proteins agrA and agrC through hydrogen bonds and π-π bonds. CONCLUSIONS The results indicated the antibiofilm activity of BCp12 and it inhibiting biofilm formation by interfering agr QS system. SIGNIFICANCE AND IMPACT OF STUDY BCp12 has the potential to be a novel anti-biofilm agent against S. aureus biofilm and used in the food industry.
Collapse
Affiliation(s)
- Li Yufang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Li Shijun
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Yang Kun
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Guo Rongxiang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Zhu Xin
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Shi Yanan
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| | - Huang Aixiang
- College of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, P. R. China
| |
Collapse
|
22
|
Gao K, Su B, Dai J, Li P, Wang R, Yang X. Anti-Biofilm and Anti-Hemolysis Activities of 10-Hydroxy-2-decenoic Acid against Staphylococcus aureus. Molecules 2022; 27:1485. [PMID: 35268586 PMCID: PMC8912057 DOI: 10.3390/molecules27051485] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Persistent infections caused by Staphylococcus aureus biofilms pose a major threat to global public health. 10-Hydroxy-2-decenoic acid (10-HDA), a main fatty acid in royal jelly, has been shown to possess various biological activities. The purpose of this study was to explore the effects of 10-HDA on the biofilms and virulence of S. aureus and its potential molecular mechanism. Quantitative crystal violet staining indicated that 10-HDA significantly reduced the biofilm biomass at sub-minimum inhibitory concentration (MIC) levels (1/32MIC to 1/2MIC). Scanning electron microscope (SEM) observations demonstrated that 10-HDA inhibited the secretion of extracellular polymeric substances, decreased bacterial adhesion and aggregation, and disrupted biofilm architecture. Moreover, 10-HDA could significantly decrease the biofilm viability and effectively eradicated the mature biofilms. It was also found that the hemolytic activity of S. aureus was significantly inhibited by 10-HDA. qRT-PCR analyses revealed that the expressions of global regulators sarA, agrA, and α-hemolysin gene hla were downregulated by 10-HDA. These results indicate that 10-HDA could be used as a potential natural antimicrobial agent to control the biofilm formation and virulence of S. aureus.
Collapse
Affiliation(s)
- Kuankuan Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Bei Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Jing Dai
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| |
Collapse
|