1
|
Zeng XB, Pei XC, Li DY, Yin FW, Liu HL, Jin ML, Zhang JH, Zhou DY. Mechanism of discoloration of Antarctic krill oil upon storage: A study based on model systems. Food Chem 2024; 459:140376. [PMID: 39002334 DOI: 10.1016/j.foodchem.2024.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1μg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.
Collapse
Affiliation(s)
- Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Meng-Ling Jin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiang-Hua Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
2
|
Wang X, Chen Y, McClements DJ, Peng D, Chen H, Xu S, Deng Q, Geng F. Regulation of Microlocalization of Antioxidants by Surfactant Micelles in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39485063 DOI: 10.1021/acs.jafc.4c08855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mass transport effect of aqueous micelles on antioxidants and oxidation products in emulsions may alter the rate, degree, and pathway of lipid oxidation. In this study, the dynamic mass transport of oxidation products and endogenous tocopherol during storage at different micelle concentrations was monitored by UV-vis spectrophotometry and high-performance liquid chromatography. Furthermore, the microlocalization of tocopherol in micelles was investigated using 1H nuclear magnetic resonance and nuclear Overhauser effect spectroscopy, fluorescence measurements, and molecular dynamics simulation. It was demonstrated that high-concentration micelles enhanced the emulsion stability by promoting the mass transport of hydroperoxides and endogenous antioxidants. The enhancement of micelles was a superposition effect of concentration, interaction sites, and binding force between tocopherols and Tween 20 molecules. Tween 20 concentration-induced favorable changes of microlocalization of tocopherol and dynamic mass transport demonstrated a new integrated perspective to control lipid oxidation.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Shufang Xu
- Clinical Nutrition Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430030, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Wang X, Chen H, Xu Y, Deng Q. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process. Food Chem 2024; 464:141760. [PMID: 39471561 DOI: 10.1016/j.foodchem.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Yingying Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
4
|
Pei XC, Zeng XB, Li DY, Wang XM, Yin FW, Liu HL, Zhou DY. The change rule of lipid oxidation and hydrolysis driven via water in Antarctic krill oil: Based on association colloid formation. Food Chem 2024; 463:141448. [PMID: 39348769 DOI: 10.1016/j.foodchem.2024.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
The residual water and amphiphilic compounds such as phospholipids in bulk oil can form reverse micelles, which affect oxidative stability. In this study, the Antarctic krill oil (AKO) samples with different water contents were subjected to accelerated storage. During storage, AKO exhibited oxidative changes, manifested as increased POV, TBARS values, and volatile compound levels but decreased PUFA percentages. Meanwhile, AKO underwent hydrolysis, evidenced by decreased PC, PE, and TG contents but increased FFA contents. Moreover, the degree of lipid oxidation and hydrolysis is dose-dependent with water added. Cryogenic scanning electron microscopy imaging and micelle size distribution measurement proved the presence of reverse micelle, and their size and interfacial area improved with increased water contents. Correlation analysis suggested that lipid oxidation and hydrolysis positively correlated with the size and interfacial area of reverse micelle. Therefore, it is speculated that the oil-water interface may be the site of lipid oxidation and hydrolysis.
Collapse
Affiliation(s)
- Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin-Miao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
5
|
Nguyen KA, Boerkamp VJP, van Duynhoven JPM, Dubbelboer A, Hennebelle M, Wierenga PA. A mechanistic kinetic model for lipid oxidation in Tween 20-stabilized O/W emulsions. Food Chem 2024; 451:139404. [PMID: 38714112 DOI: 10.1016/j.foodchem.2024.139404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Models predicting lipid oxidation in oil-in-water (O/W) emulsions are a requirement for developing effective antioxidant solutions. Existing models do, however, not include explicit equations that account for composition and structural features of O/W emulsions. To bridge this gap, a mechanistic kinetic model for lipid oxidation in emulsions is presented, describing the emulsion as a one-dimensional three phase (headspace, water, and oil) system. Variation in oil droplet sizes, overall surface area of oil/water interface, oxidation of emulsifiers, and the presence of catalytic transition metals were accounted for. For adequate predictions, the overall surface area of oil/water interface needs to be determined from the droplet size distribution obtained by dynamic and static light scattering (DLS, SLS). The kinetic model predicted well the formation of oxidation products in both mono- and polydisperse emulsions, with and without presence of catalytic transition metals.
Collapse
Affiliation(s)
- Khoa A Nguyen
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Vincent J P Boerkamp
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - John P M van Duynhoven
- Unilever Food Innovation Centre, Bronland 14, 6708 WH Wageningen, the Netherlands.; Wageningen University & Research, Laboratory of Biophysics, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Arend Dubbelboer
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| | - Marie Hennebelle
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands..
| | - Peter A Wierenga
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
7
|
Zöngür A, Er Zeybekler S. Evaluation of the effects of zinc oxide (ZnO NPs) nanoparticles synthesized by green synthesis on Caenorhabditis elegans. Biol Futur 2024:10.1007/s42977-024-00217-3. [PMID: 38662325 DOI: 10.1007/s42977-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
In recent years, the rapid development of nanotechnology has caused the products obtained with this technology to be used more daily. Information on the effects of these products, which provide great advantages in every respect, on human health and the environment is insufficient. It has been suggested that these nanoparticles may have toxic effects on living things, mostly in animal experiments and cell cultures. In this paper, the organism Caenorhabditis elegans (C. elegans), which contains a genome and biochemical ways highly similar to humans, is used to understand and reveal the metabolism of Zinc oxide nanoparticles (ZnO NPs) toxicological effects. The toxicological effects of ZnO NPs on C. elegans organisms were investigated and the results were evaluated in terms of environment and human health. C. elegans was exposed to commercial ZnO NPs and green synthesized ZnO NPs from Olea europaea (olive tree, OLE). LC50 values were determined by probit analysis (green synthesized ZnO NP LC5024h = 84.97 mg/L, LC5072h = 33.27 mg/L, commercial ZnO NPs LC5024h = 5.75 mg/L, LC5072h = 1.91 mg/L). When the survival times of C. elegans were evaluated by the Kaplan-Meier method, it was seen that commercial ZnO NPs were more toxic than green synthesized ZnO NPs. In MTT tests, it was clearly seen that commercial ZnO NPs and green synthesized ZnO NPs entered the cell and caused different cytotoxicity. While there was a difference between control and 0.5, 2.5, 5, 10, 25, and 50 mg/L doses in commercial ZnO NP applications, there were significant differences between control and 25, 50 mg/L concentrations in green synthesized ZnO NP applications.
Collapse
Affiliation(s)
- Alper Zöngür
- Gemerek Vocational School, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Simge Er Zeybekler
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova-Izmir, Turkey
| |
Collapse
|
8
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Tian Y, Sun F, Wang Z, Yuan C, Wang Z, Guo Z, Zhou L. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chem X 2024; 21:101066. [PMID: 38268843 PMCID: PMC10806259 DOI: 10.1016/j.fochx.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Suhag R, Ferrentino G, Morozova K, Zatelli D, Scampicchio M, Amorati R. Antioxidant efficiency and oxidizability of mayonnaise by oximetry and isothermal calorimetry. Food Chem 2024; 433:137274. [PMID: 37666126 DOI: 10.1016/j.foodchem.2023.137274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to introduce a new method based on isothermal calorimetry (IC) for measuring the autoxidation rate in mayonnaise samples. Mayonnaise samples were prepared by homogenizing an aqueous phase, consisting of vinegar and egg yolk, with various oil phases, including sunflower, corn, extra virgin olive, grape seed, and apple seed oils at 60 °C. The rate of free radical formation (Ri) was controlled by adding AIBN (Ri = 4.4±0.1×10-9 M/s). The autoxidation rate determined by IC was highly correlated with the one measured using the oxygen uptake method (R2 = 0.99). The IC method accurately indicated the antioxidant capacity and rates of both inhibited and uninhibited periods, together with the oxidizability of mayonnaise samples. The mayonnaise made with extra virgin olive oil exhibited the lowest oxidizability, while sunflower oil showed maximum antioxidant efficiency. A significant advantage of the IC method was its ability to simultaneously measure up to 24 samples with minimal effort.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | | | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy.
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna I-40126, Italy
| |
Collapse
|
11
|
Velasco J, Gil MJ, Wen YQ, García-González A, Ruiz-Méndez MV. New Insights into the Loss of Antioxidant Effectiveness of Phenolic Compounds in Vegetable Oils in the Presence of Phosphatidylcholine. Antioxidants (Basel) 2023; 12:1993. [PMID: 38001846 PMCID: PMC10669491 DOI: 10.3390/antiox12111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
It has been proposed that lipid oxidation reactions in edible oils primarily occur in reverse micelles (RM) of amphiphilic components. While the prooxidative effect of RM has been demonstrated, the mechanism involved is not fully understood. Both reductions and enhancements in the antioxidant efficacy (AE) of α-tocopherol and Trolox have been observed in different studies when phosphatidylcholine (PC) was added and PC RM were formed. However, most of these investigations employed lipid systems consisting of stripped vegetable oil diluted in saturated medium-chain triacylglycerols (MCT) and utilized antioxidant concentrations well below those found in edible oils. These two specific factors were investigated in the present study. The effect of RM of purified egg yolk PC on the AE of 1.16 mmol kg-1 α-tocopherol or Trolox in stripped sunflower oil (SSO) was studied by the Rancimat (100 °C) and oven (50 °C) tests. Increasing PC concentrations (50-1000 ppm) had no significant impact on α-tocopherol, but substantial reductions in AE were observed for Trolox. This phenomenon may be attributed to the partitioning of Trolox into the pre-existing PC micelles, suggesting that primary oxidation reactions occurred in the continuous lipid phase. In addition, the effectiveness of both antioxidants decreased significantly in the presence of PC when a low antioxidant concentration (0.06 mmol kg-1) was assayed in SSO:MCT (1:3, w/w).
Collapse
Affiliation(s)
- Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de Utrera, km 1, 41013 Sevilla, Spain; (M.-J.G.); (A.G.-G.); (M.-V.R.-M.)
| | - María-Jesús Gil
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de Utrera, km 1, 41013 Sevilla, Spain; (M.-J.G.); (A.G.-G.); (M.-V.R.-M.)
| | - Yun-Qi Wen
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao 266003, China;
| | - Aída García-González
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de Utrera, km 1, 41013 Sevilla, Spain; (M.-J.G.); (A.G.-G.); (M.-V.R.-M.)
| | - María-Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de Utrera, km 1, 41013 Sevilla, Spain; (M.-J.G.); (A.G.-G.); (M.-V.R.-M.)
| |
Collapse
|
12
|
Ghani MA, Barril C, Bedgood DR, Burrows GE, Prenzler PD. Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules 2023; 28:3106. [PMID: 37049870 PMCID: PMC10095623 DOI: 10.3390/molecules28073106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Acacia implexa, Eucalyptus rossii and Exocarpos cupressiformis are native plants of Australia, which were used by the First Peoples for medicinal purposes. In this study, 70% aqueous ethanol crude extracts were prepared from A. implexa bark and leaves, E. rossii leaves and E. cupressiformis leaves, and partitioned via sequential extraction with n-hexane, dichloromethane (DCM), ethyl acetate and ethanol. The crude extracts and fractions were screened for antioxidant activity using a novel, high-throughput lipid-based antioxidant assay, as well as the aqueous ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay and the Folin-Ciocalteu test for total phenols. In the lipid-based assay, non-polar n-hexane and DCM fractions showed higher antioxidant activity against the formation of peroxides and thiobarbituric acid reactive substances (TBARS) than the other fractions, whereas the non-polar fractions were not effective in aqueous assays. This illustrates that the high potential of the lipid-soluble n-hexane and DCM fractions as antioxidants would have been missed if only aqueous-based assays were used. In addition, the potent antioxidant compounds were putatively annotated using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS). Gallic acid, (+)-catechin, (-)-epicatechin and tannins were found in most crude extracts.
Collapse
Affiliation(s)
- Md. Ahsan Ghani
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Celia Barril
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Danny R. Bedgood
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Geoffrey E. Burrows
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Paul D. Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- The Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
13
|
Berton-Carabin C, Villeneuve P. Targeting Interfacial Location of Phenolic Antioxidants in Emulsions: Strategies and Benefits. Annu Rev Food Sci Technol 2023; 14:63-83. [PMID: 36972155 DOI: 10.1146/annurev-food-060721-021636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
It is important to have larger proportions of health-beneficial polyunsaturated lipids in foods, but these nutrients are particularly sensitive to oxidation, and dedicated strategies must be developed to prevent this deleterious reaction. In food oil-in-water emulsions, the oil-water interface is a crucial area when it comes to the initiation of lipid oxidation. Unfortunately, most available natural antioxidants, such as phenolic antioxidants, do not spontaneously position at this specific locus. Achieving such a strategic positioning has therefore been an active research area, and various routes have been proposed: lipophilizing phenolic acids to confer them with an amphiphilic character; functionalizing biopolymer emulsifiers through covalent or noncovalent interactions with phenolics; or loading Pickering particles with natural phenolic compounds to yield interfacial antioxidant reservoirs. We herein review the principles and efficiency of these approaches to counteract lipid oxidation in emulsions as well as their advantages and limitations.
Collapse
Affiliation(s)
- Claire Berton-Carabin
- INRAE, UR BIA, Nantes, France;
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, Netherlands
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France;
- Qualisud, University of Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
14
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
15
|
Yang BW, Ji SY, Zhao T, Wang ZT, Zhang YS, Pan QN, Huang W, Lu BY. Phytosterols photooxidation in O/W emulsion: Influence of emulsifier composition and interfacial properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
16
|
Lipid oxidation in food emulsions; a review dedicated to the role of the interfacial area. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
17
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
18
|
Zhang X, Wang D, Liu S, Tang J. Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry. Foods 2022; 11:foods11244064. [PMID: 36553806 PMCID: PMC9778365 DOI: 10.3390/foods11244064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensive overview of the recent advances in the Pickering emulsion stabilized by BCNF particles, including the classification, preparation method, and physicochemical properties of diverse BCNF-based particles as Pickering stabilizers, as well as surface modifications with other substances to improve their emulsifying performance and functionality. Additionally, this paper highlights the stabilization mechanisms and provides potential food applications of BCNF-based Pickering emulsions, such as nutrient encapsulation and delivery, edible coatings and films, fat substitutes, etc. Furthermore, the safety issues and future challenges for the development and food-related applications of BCNFs-based Pickering emulsions are also outlined. This work will provide new insights and more ideas on the development and application of nanofibril-based Pickering emulsions for researchers.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.L.); (J.T.)
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Correspondence: (S.L.); (J.T.)
| |
Collapse
|
19
|
Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review paper focuses on the antioxidant properties of phenolic compounds in oil in water (o/w) emulsion systems. The authors first provide an overview of the most recent studies on the activity of common, naturally occurring phenolic compounds against the oxidative deterioration of o/w emulsions. A screening of the latest literature was subsequently performed with the aim to elucidate how specific parameters (polarity, pH, emulsifiers, and synergistic action) affect the phenolic interfacial distribution, which in turn determines their antioxidant potential in food emulsion systems. An understanding of the interfacial activity of phenolic antioxidants could be of interest to food scientists working on the development of novel food products enriched with functional ingredients. It would also provide further insight to health scientists exploring the potentially beneficial properties of phenolic antioxidants against the oxidative damage of amphiphilic biological membranes (which link to serious pathologic conditions).
Collapse
|
20
|
Effect of α-tocopherol on the oxidative stability of horse oil-in-water emulsion during storage. Food Sci Biotechnol 2022; 32:639-645. [PMID: 37009037 PMCID: PMC10050615 DOI: 10.1007/s10068-022-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Horse oil-in-water (O/W) emulsions were prepared and α-tocopherol was added at 0, 100, 200, and 500 ppm (α-T0, α-T100, α-T200, α-T500) to enhance its oxidative stability. Mean particle diameters of the O/W emulsions were 243-299 nm. Zeta potential values increased with the addition of α-tocopherol; however, they decreased during storage at 40 °C for 30 days. Particle size distribution of the O/W emulsion with α-tocopherol remained the same as that of α-T0. For lipid oxidation, the peroxide values of α-T0 and α-T500 were greatly increased from 2.96 and 2.89 to 13.76 and 12.46 mmol/kg oil, respectively, after 30 days. The α-T100 and α-T200 maintained lower peroxide values than other emulsions. Thiobarbituric acid-reactive substance values of α-T0 and α-T500 were higher than those of α-T100 and α-T200. These results indicate that the addition of α-tocopherol from 100 to 200 ppm to the horse oil-in-water emulsion effectively improves its oxidative stability during storage.
Collapse
|
21
|
Effects of Tea Polyphenol and Its Combination with Other Antioxidants Added during the Extraction Process on Oxidative Stability of Antarctic Krill (Euphausia superba) Oil. Foods 2022; 11:foods11233768. [PMID: 36496576 PMCID: PMC9736581 DOI: 10.3390/foods11233768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Antarctic krill (Euphausia superba) oil contains high levels of marine omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In industrial production, krill oil is usually extracted from krill meals by using ethanol as a solvent. Water in the krill meal can be easily extracted by using ethanol as an extraction solvent. During the extraction process, the EPA and DHA are more easily oxidized and degraded when water exists in the ethanol extract of krill oil. Based on the analysis of peroxide value (POV), thiobarbituric acid-reactive substances (TBARS), fatty acid composition, and lipid class composition, the present study indicated that the composite antioxidants (TP-TPP) consist of tea polyphenol (TP) and tea polyphenol palmitate (TPP) had an excellent antioxidant effect. By contrast, adding TP-TPP into ethanol solvent during the extraction process is more effective than adding TP-TPP into krill oil after the extraction process.
Collapse
|
22
|
Li X, Wang Z, Xing C, Chen Z, Sun W, Xie D, Xu G, Wang X. Investigation of oxidized triglyceride monomer (oxTGM) produced in deteriorated soybean oil at frying temperatures: a kinetic study. Food Res Int 2022; 162:112121. [DOI: 10.1016/j.foodres.2022.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
23
|
Klooster ST, Schroën K, Berton-Carabin C. Lipid oxidation products in model food emulsions: do they stay in or leave droplets, that’s the question. Food Chem 2022; 405:134992. [DOI: 10.1016/j.foodchem.2022.134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
|
24
|
A unifying approach to lipid oxidation in emulsions: Modelling and experimental validation. Food Res Int 2022; 160:111621. [DOI: 10.1016/j.foodres.2022.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
|
25
|
Doert M, Grebenteuch S, Kroh LW, Rohn S. A ternary system of α-tocopherol with phosphatidylethanolamine and l-ascorbyl palmitate in bulk oils provides antioxidant synergy through stabilization and regeneration of α-tocopherol. Food Chem 2022; 391:133084. [DOI: 10.1016/j.foodchem.2022.133084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
|
26
|
Pei X, Yin F, Zhong X, Liu H, Song L, Zhao G, Wang Y, Zhou D. Effects of different antioxidants and their combinations on the oxidative stability of DHA algae oil and walnut oil. Food Sci Nutr 2022; 10:2804-2812. [PMID: 35959263 PMCID: PMC9361454 DOI: 10.1002/fsn3.2883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
Through monitoring Rancimat induction time (RIT), peroxide value (POV), and thiobarbituric acid-reactive substances (TBARS) of docosahexaenoic acid (DHA) algae oil and walnut oil during accelerated storage, the effects of the single and the combinations of seven kinds of antioxidants involving ascorbyl palmitate (AP), phytic acid (PA), vitamin E (VE), antioxidant of bamboo leaves (AOB), rosemary extract, tea polyphenols (TP), and tea polyphenol palmitate (TPP) against lipid oxidation were evaluated. RIT, POV, and TBARS results showed that the DHA algae oil sample containing 600 mg/kg TPP revealed the strongest stability and the walnut oil sample containing 450 mg/kg TPP and 100 mg/kg TP revealed the strongest stability. Then, the shelf lives of two oils were predicted from the extrapolation of the linear regression model between Log RIT and temperature. Our results indicated that the optimal antioxidant could prolong the shelf lives of DHA algae oil and walnut oil by 2.31- and 7.74-fold, respectively.
Collapse
Affiliation(s)
- Xue‐Chen Pei
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Fa‐Wen Yin
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Xu Zhong
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Hui‐Lin Liu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Liang Song
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Guan‐Hua Zhao
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | | | - Da‐Yong Zhou
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| |
Collapse
|
27
|
Effect of polyglycerol polyricinoleate on the inhibitory mechanism of sesamol during bulk oil oxidation. Sci Rep 2022; 12:11946. [PMID: 35831366 PMCID: PMC9279469 DOI: 10.1038/s41598-022-16201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, effects of sesamol on improving the oxidative stability of sunflower oil and its oil-in-water emulsion was investigated. To investigate the kinetic parameters related to the initiation and propagation stages of oxidation, a sigmoidal-model was used. Sesamol exhibited higher antioxidant activity in sunflower oil-in-water emulsion than that of sunflower oil. In both sunflower oil and sunflower oil-in-water emulsion, the inhibitory effect of sesamol against lipid oxidation continued even after the induction period. To improve the efficiency of sesamol in sunflower oil, polyglycerol polyricinoleate (PGPR) was incorporated into the functional environment of the sesamol. Sesamol exhibited a synergistic effect with PGPR during both initiation (synergistic effect of 68.87%) and propagation (synergistic effect of 36.84%) stages. Comparison of the size of reverse micelles in samples containing PGPR with those without PGPR revealed that PGPR can enhance the efficiency of sesamol by increasing the acceptance capacity of lipid hydroperoxides in reveres micelles structures. This can result in enhancing the effective collisions between sesamol and lipid hydroperoxides in the presence of PGPR. The water produced as a major byproduct of oxidation played a key role on the antioxidant activity of sesamol alone or in combination with PGPR during oxidation process.
Collapse
|
28
|
Liu J, Wang YJ, Huang XY, Li XZ, Ma CG, McClements DJ. NMR Analysis of Lipid Oxidation in Flaxseed Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8417-8429. [PMID: 35767802 DOI: 10.1021/acs.jafc.2c00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of linolenic (Ln) and linoleic (L) acyl oxidation products during storage of flaxseed oil (FO)-in-water emulsions was monitored using proton nuclear magnetic resonance (1H NMR) spectroscopy, as well as chemical analytical methods and gas chromatography. Emulsions containing 10% FO and 1% Tween 60 were prepared by homogenization and then stored at 37 °C in the dark for 21 days under accelerated oxidation conditions (500 μmol ferrous sulfate). The induction time of the emulsions, after which rapid lipid oxidation was first observed, was 5-7 days, as shown by increases in peroxide values and hydroperoxide concentrations determined by NMR spectroscopy. Analysis of the hexanal and propanal concentrations during storage by HS-SPME-GC indicated that the oxidation of Ln and L acyls in the emulsions occurred simultaneously. The oxidation products originating from the Ln and L acyls were monitored using 1H NMR spectroscopy throughout the oxidation process. These results also showed that the Ln and L acyls oxidized simultaneously, and isomers of hydroperoxy-cyclic hydroperoxides (HCPs), Z,E-conjugated dienic hydroperoxides (ZECDHPs), and E,E-conjugated dienic hydroperoxides (EECDHPs) were the major primary oxidation products. Aldehydes were observed after 7 days, which was taken to be the start of the propagation stage, with the formation of a significant amount of oxygenated α, β-unsaturated aldehydes (OαβUAs). Based on the concentrations of hydroperoxides originating from the Ln and L acyls, our results suggested that the loss rate of L acyls was parallel to that of Ln acyls. This result was consistent with Ln acyls adopting a tighter packing at the oil-water interface in the emulsions than L acyls. This hypothesis was supported by the NMR relaxation time data. A good correlation between the isomer concentrations of ZECDHPs and HCPs in Ln acyls and between ZECDHPs and EECDHPs in L acyls was shown, with the mole ratios between them being 1.2 and 1.1, respectively. Droplet size and microstructure analyses showed that droplet aggregation occurred from 11 days onwards, which was attributed to polar oxidation products located at the oil droplet surfaces promoting coalescence. Zeta-potential measurements indicated that the droplets became more negative during storage, which was attributed to the accumulation of anionic reaction products at the droplet surfaces.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
- Institute of Grain and Oil Standardization, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Ya Juan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Xue Yan Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Xing Zhen Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Chuan Guo Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|