Ma X, Wu S. Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources.
Crit Rev Food Sci Nutr 2022;
64:4882-4903. [PMID:
36384378 DOI:
10.1080/10408398.2022.2146652]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are polycyclic aromatic hydrocarbons (PAHs) functionalized with at least one carbonyl group and are generally thought to be more toxic than PAHs. In this review, the physical-chemical properties, toxicity, occurrence, and potential sources of OPAHs in food were comprehensively discussed. The toxicities of 1,2-naphthoquinone, 1,4-naphthoquinone, 6H-benzo[cd]pyren-6-one, benzo[a]anthracene-7,12-quinone and 9,10-phenanthrenequinone were prominent among the OPAHs. Both 1,4-naphthoquinone and 1,2-naphthoquinone exhibited strong genotoxicity, cytotoxicity, and developmental toxicity. 6H-benzo[cd]pyren-6-one and benzo[a]anthracene-7,12-quinone showed high genotoxicity and cardiovascular toxicity. Although 9,10-phenanthrenequinone showed no genotoxicity, it exhibited almost the strongest cytotoxicity. For the majority of foods, the concentrations of OPAHs and PAHs were on the same order of magnitude. OPAHs tend to be positively correlated with the corresponding PAH concentrations in oil and fried food, while for barbequed food and seafood, no obvious correlation was found. In addition, 9-fluorenone, 9,10-anthraquinone, benzanthrone and 1,2-acenaphthenequinone had high abundance in food. Environmental pollution, food composition, storage conditions, heating methods, and other treatments influence the accumulation of OPAHs in food. Furthermore, oxygen and water played an important role in the transformation from PAHs to OPAHs. In short, this review guides the evaluation and further reduction of OPAH-related health risks in food.
Collapse