1
|
Yang P, Zhou Q, Zhang Y, Jia M, Li R, Qu Q, Li Z, Feng M, Tian Y, Ren W, Peng X, Shi X. Exploring the Prebiotic Potential of Fermented Astragalus Polysaccharides on Gut Microbiota Regulation In Vitro. Curr Microbiol 2024; 82:52. [PMID: 39709319 DOI: 10.1007/s00284-024-04035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Astragalus polysaccharides (APS) are known for their prebiotic properties, and fermentation by probiotics is a promising strategy to enhance the prebiotic activity of polysaccharides. In this study, Lactobacillus rhamnosus was used to ferment APS, and response surface methodology was applied to optimize the fermentation parameters. The optimal conditions were determined as follows: 10.28% APS addition, 5.83% inoculum, 35.6 h of fermentation time, and a temperature of 34.6 °C. Additionally, the effects of Fermented Astragalus polysaccharides (FAPS) on human gut microbiota were investigated through in vitro anaerobic incubation. Fecal samples were obtained from 6 healthy volunteers, which were then individually incubated with FAPS. Results demonstrated that FAPS significantly regulated microbial composition and diversity, increasing the abundance of beneficial gut bacteria such as Lactobacillus, E. faecalis, and Brautobacterium, while inhibiting harmful species such as Shigella, Romboutsia, and Clostridium_sensu_stricto_1. Furthermore, FAPS enhanced the production of short-chain fatty acids (SCFAs), which are increasingly recognized to play a role in intestinal homeostasis. These findings suggested that FAPS offers several advantages in terms of increasing beneficial metabolites and regulating gut microbial composition. This study provides valuable insights for expanding the use of plant-derived polysaccharides in the food industry and for developing functional dietary supplements.
Collapse
Affiliation(s)
- Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Qing Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Yingying Zhang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Mingyue Jia
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Runshuang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Weishuo Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China.
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science andTechnology Commission, Beijing, 100029, China.
| |
Collapse
|
2
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024; 16:2007-2020. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
3
|
Chen JH, Yin X, He H, Lu LW, Wang M, Liu B, Cheng KW. Potential neuroprotective benefits of plant-based fermented foods in Alzheimer's disease: an update on preclinical evidence. Food Funct 2024; 15:3920-3938. [PMID: 38517682 DOI: 10.1039/d3fo03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) currently lacks effective treatments, making its prevention a critical focus. While accumulating evidence supports that plant-based fermented foods may contribute to AD prevention, the neuroprotective effect of plant-based fermented foods on AD has not been comprehensively reviewed. In this study, we conducted a systematic review of preclinical studies on the efficacy of plant-based fermented foods in AD. The literature search was based on databases including PubMed, Embase, Web of Science, and Scopus. The PICO approach was employed for report inclusion, and each report was assessed for risk of bias using the SYRCLE's RoB tool. From the analysis of 25 retrieved reports, we extracted essential details, including bibliographic information, animal models and characteristics, sources of plant-based fermented foods, dosages, administration routes, durations, and outcome measures. Our findings indicate that plant-based fermented foods may positively impact acute and long-term cognitive function, as well as beta-amyloid-mediated neurodegeneration. This review sheds light on the potential neuroprotective benefits of plant-based fermented foods for various AD-related aspects, including oxidative stress, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysfunctional amyloidogenic pathways, and cognitive deficits, as observed in rodent models of AD. However, the small number of studies obtained from our literature search and the finding that many of them were of moderate methodological quality suggest the need for further investigation to substantiate the beneficial potential of this class of functional food for the management of AD.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xuan Yin
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui He
- School of Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Louise Weiwei Lu
- School of Biological Sciences, Faculty of Science, The University, of Auckland, Auckland 1010, New Zealand
| | - Mingfu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Mitchell E, Comerford K, Knight M, McKinney K, Lawson Y. A review of dairy food intake for improving health among black geriatrics in the US. J Natl Med Assoc 2024; 116:274-291. [PMID: 38365561 DOI: 10.1016/j.jnma.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
The transition to older adulthood is generally marked by progressive declines in body composition, metabolism, cognitive function, and immunity. For socially disadvantaged geriatric populations such as Black Americans, this life stage may also include additional stressors, including dealing with discrimination, poor access to healthcare, and food insecurity. These types of chronic stressors are linked to a higher allostatic load, which is associated with accelerated biological aging, higher rates of adverse health outcomes, and an overall lower quality of life. Of the numerous factors involved in healthy aging, a growing body of research indicates that consuming a higher quality diet that is rich in fruits, vegetables, whole grains, protein foods, and dairy foods, is one of the most potent factors for helping to protect against age-related disease progression. Among the food groups listed above that are recommended by the 2020-2025 Dietary Guidelines for Americans dairy foods are unique in their ability to provide several of the essential nutrients (e.g., high-quality protein, calcium, potassium, vitamin B12, and vitamin D in fortified products) that are most often inadequately consumed by older Black Americans. However, dairy is the most inadequately consumed food group in the US, with older Black adults consuming fewer than half of the 3 daily recommended servings. Therefore, this review examines the current body of evidence exploring the links between dairy intake and age-related disease risk, with a special focus on health and disparities among older Black Americans. Overall, the evidence from most systematic reviews and/or meta-analyses focused on dairy intake and musculoskeletal health suggest that higher dairy intake across the life span, and especially from fermented and fortified products, is associated with better bone and muscle health outcomes in older adults. The evidence on dairy intake and neurocognitive and immune outcomes among older adults holds significant promise for potential benefits, but most of these results are sourced from individual studies or narrative reviews and are not currently corroborated in systematic reviews or meta-analyses. Additionally, most of the research on dairy intake and age-related disease risk has been performed in White populations and can only be extrapolated to Black populations. Nonetheless, older Black populations who do not meet the DGA recommended 3 servings of dairy per day due to lactose intolerance, restrictive dietary patterns, or for other reasons, are likely falling short of several of the nutritional requirements necessary to support healthy aging.
Collapse
Affiliation(s)
- Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| | - Kevin Comerford
- OMNI Nutrition Science; California Dairy Research Foundation, Davis, CA, United States.
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yolanda Lawson
- Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|