1
|
Marafon K, Pereira-Coelho M, da Silva Haas IC, da Silva Monteiro Wanderley BR, de Gois JS, Vitali L, Luna AS, Canella MHM, Hernández E, de Mello Castanho Amboni RD, Prudencio ES. An opportunity for acerola pulp (Malpighia emarginata DC) valorization evaluating its performance during the block cryoconcentration by physicochemical, bioactive compounds, HPLC-ESI-MS/MS, and multi-elemental profile analysis. Food Res Int 2024; 176:113793. [PMID: 38163707 DOI: 10.1016/j.foodres.2023.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The present study evaluated the effect of cryoconcentration of pulp blocks of acerola (Malpighia emarginata DC). The study evaluated cryoconcentration in three stages. The cryoconcentrated samples, the ice fractions, and the initial pulp were evaluated for physicochemical composition, bioactive composition, and multielement profile. The cryoconcentrated sample obtained in the third stage of cryoconcentration showed the best results for the concentration factor, process efficiency, total soluble solids content, red color intensity, and increasing of the macro and micronutrients: Cu, Ca, S, Sr, K, Mn, Na, P, Mg, Fe. All stages presented good performance in the total soluble solids content, increase in the titratable acidity of the concentrates, and progressive increase in the intensity of the red color. Generally, higher levels of total phenolic and antioxidant activity were found for the 2nd and 3rd concentrates. The phenolic activity showed an increase of 166.90% in the 3rd stage concentrate compared to fresh pulp, and the antioxidant activity was 112.10% by the ABTS method and 131.60% by the DPPH method, both in the 3rd stage concentrate. The major individual polyphenols were Ferulic acid, Protocatechuic acid, and Taxifolin, with significant increases in the concentration of the compounds in the 2nd and 3rd stage concentrates. In addition, the contents of potentially toxic metals were below detection limits. During the cryoconcentration process, there was a decrease in the values of vitamin C content, moisture content, density, and elements Cu, Sr, and Zn.
Collapse
Affiliation(s)
- Karine Marafon
- Postgraduate Program in Food Engineering, Technology Center, Federal University of Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Marina Pereira-Coelho
- Department of Chemical, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | | | | | - Luciano Vitali
- Department of Chemical, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aderval S Luna
- Department of Analytical Chemistry, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Maria Helena Machado Canella
- Postgraduate Program in Food Engineering, Technology Center, Federal University of Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | - Eduard Hernández
- Department of Agri-Food Engineering and Biotechnology, Universitat Politécnica de Catalunya BarcelonaTech, 8. 08860, Castelldefels, Barcelona, Spain
| | | | - Elane Schwinden Prudencio
- Postgraduate Program in Food Engineering, Technology Center, Federal University of Santa Catarina, Trindade, Florianópolis, SC, Brazil; Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Ribeiro MDO, de Abreu CB, Pinho CS, Ribeiro LDO, Neto ADDA, Teixeira LSG, Azcarate SM, Dias FDS. Application of two- and multiway chemometric strategies for describing elementomic changes in pepper plants exposed to cadmium stress by multielement determination. CHEMOSPHERE 2023; 340:139831. [PMID: 37607598 DOI: 10.1016/j.chemosphere.2023.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 08/24/2023]
Abstract
The objective of this work was to evaluate elemental changes in pepper exposed to Cd stress through different chemometric tools. For this purpose, pepper plants were grown under five different treatments with different Cd concentrations in the nutrient solution. Considering the hypothesis that pepper plants exposed to Cd stress during growth undergo changes in the macro- and microelemental distribution in leaves, stems, and roots, principal component analysis (PCA) and parallel factor (PARAFAC) analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes in pepper plants. Since the number of variables and the data generated were large and complex, the application of chemometric tools was justified to facilitate the visualization and interpretation of results. The mineral composition, namely the Ca, Cd, Cu, Fe, K, Mg, Mn, N, and P contents, was assessed in 180 samples of leaves, stems, and roots of the cultivated peppers. Then, PCA and PARAFAC analysis were applied to compare bidirectional and multivariate chemometric strategies to assess elemental changes throughout pepper plants. The visualization of the trend on each sample and their intrinsic relationship with the variables were possible with the application of PCA. The use of PARAFAC analysis permitted the simultaneous study of all samples in a straightforward representation of the information that facilitated a quick and comprehensive understanding of the spatial distribution of elements in plants. Thus, macroelements (Ca, K, Mg, N, and P) that were found in higher concentrations in leaves did not present significant differences in the distribution along the plants under different treatment conditions. In contrast, a significant impact on the microelement (Cu, Fe, and Mn) distribution was produced between uncontaminated and contaminated samples. This analysis revealed a significant accumulation of Cd in roots and adverse effects on normal plant growth, demonstrating their level of phytotoxicity to pepper.
Collapse
Affiliation(s)
- Marcos de O Ribeiro
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Claudia B de Abreu
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Cindy S Pinho
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Lucas de O Ribeiro
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - André D de A Neto
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz Das Almas, 44380-000, Cruz Das Almas, Bahia, Brazil
| | - Leonardo S G Teixeira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil
| | - Silvana M Azcarate
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, And Instituto de Ciencias de La Tierra y ambientales de La Pampa (INCITAP), Av. Uruguay 151, Santa Rosa, L6300CLB, La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy, Cruz 2290, CABA C1425FQB, Argentina.
| | - Fabio de S Dias
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-280, Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Application of stable isotope and mineral element fingerprint in identification of Hainan camellia oil producing area based on convolutional neural networks (CNN). Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Chen G, Shen J, Zhang Y, Shi F, Mei X, Xue C, Chang Y. Sulfated fucan could serve as a species marker of sea cucumber with endo-1,3-fucanase as the essential tool. Carbohydr Polym 2023; 312:120817. [PMID: 37059545 DOI: 10.1016/j.carbpol.2023.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
In the past few decades, sulfated fucan from sea cucumber had attracted considerable interest owing to its abundant physiological activities. Nevertheless, its potential for species discrimination had not been investigated. Herein, particular attention was given to sea cucumber Apostichopus japonicus, Acaudina molpadioides, Holothuria hilla, Holothuria tubulosa, Isostichopus badionotus and Thelenota ananas to examine the feasibility of sulfated fucan as a species marker of sea cucumber. The enzymatic fingerprint suggested that sulfated fucan exhibited significant interspecific discrepancy and intraspecific stability, which revealed that sulfated fucan could serve as the species marker of sea cucumber, by utilizing the overexpressed endo-1,3-fucanase Fun168A and the ultra-performance liquid chromatography-high resolution mass spectrum. Moreover, oligosaccharide profile of sulfated fucan was determined. The oligosaccharide profile combined with hierarchical clustering analysis and principal components analysis further confirmed that sulfated fucan could serve as a marker with a satisfying performance. Besides, load factor analysis showed that the minor structure of sulfated fucan also contributed to the sea cucumber discrimination, besides the major structure. The overexpressed fucanase played an indispensable role in the discrimination, due to its specificity and high activity. The study would lead to a new strategy for species discrimination of sea cucumber based on sulfated fucan.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Feifei Shi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
5
|
A Green Approach Based on Micro-X-ray Fluorescence for Arsenic, Micro- and Macronutrients Detection in Pteris vittata. WATER 2022. [DOI: 10.3390/w14142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, benchtop micro-X-ray fluorescence spectrometry (µXRF) was evaluated as a green and cost-effective multielemental analytical technique for P. vittata. Here, we compare the arsenic (As) content values obtained from the same samples by µXRF and inductively coupled plasma-optical emissions spectrometry (ICP–OES). To obtain samples with different As concentrations, fronds at different growth time points were collected from P. vittata plants grown on two natural As-rich soils with either high or moderate As (750 and 58 mg/kg). Dried samples were evaluated using multielement-µXRF analysis and processed by PCA. The same samples were then analysed for multielement concentrations by ICP–OES. We show that As concentrations detected by ICP–OES, ranging from 0 to 3300 mg/kg, were comparable to those obtained by µXRF. Similar reliability was obtained for micro- and macronutrient concentrations. A positive correlation between As and potassium (K) contents and a negative correlation between As and iron (Fe), calcium (Ca) and manganese (Mn) contents were found at both high and moderate As. In conclusion, we demonstrate that this methodological approach based on μXRF analysis is suitable for monitoring the As and element contents in dried plant tissues without any chemical treatment of samples and that changes in most nutrient concentrations can be strictly related to the As content in plant tissue.
Collapse
|