1
|
Yingling B, Xueqin W, Xiaolong C. Biosynthesis of pterostilbene in Escherichia coli from resveratrol on macroporous adsorption resin using a two-step substrate addition strategy. Biotechnol Bioeng 2024. [PMID: 39400925 DOI: 10.1002/bit.28865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Pterostilbene (PST), a 3',5'-O-methylated derivative of resveratrol (RSV), is a potent natural antioxidant produced by some plants in trace amounts as defense compound. It exhibits various health-promoting activities, such as anticancer, antiviral, and antimicrobial effects. Large-scale biosynthesis of PST is crucial due to the challenges associated with extracting it from plants. This study aims to develop an efficient method for PST production using an engineered Escherichia coli strain by feeding RSV as a precursor. We introduced a two-step substrate addition strategy combined with immobilized RSV (IMRSV) on macroporous adsorption resin (MAR) to enhance PST production. Five MARs were selected for RSV immobilization, and the substrate addition strategy and fermentation parameters for PST synthesis were optimized. A maximum PST concentration of 403 ± 9 mg/L was achieved, representing a 239% increase over the control, which in a one-step addition of free RSV. The PST titer reached 395 ± 24 mg/L in a 3-L bioreactor. In conclusion, the combination of a two-step substrate addition system and IMRSV is a promising approach for the economical and industrial-scale production of PST.
Collapse
Affiliation(s)
- Bao Yingling
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wu Xueqin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Technology, Zhejiang University of Technology, Hangzhou, China
| | - Chen Xiaolong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Wen Y, Fu Z, Li J, Liu M, Wang X, Chen J, Chen Y, Wang H, Wen S, Zhang K, Deng Y. Targeting m 6A mRNA demethylase FTO alleviates manganese-induced cognitive memory deficits in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134969. [PMID: 38908185 DOI: 10.1016/j.jhazmat.2024.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Manganese (Mn) induced learning and memory deficits through mechanisms that are not fully understood. In this study, we discovered that the demethylase FTO was significantly downregulated in hippocampal neurons in an experimental a mouse model of Mn exposure. This decreased expression of FTO was associated with Mn-induced learning and memory impairments, as well as the dysfunction in synaptic plasticity and damage to regional neurons. The overexpression of FTO, or its positive modulation with agonists, provides protection against neurological damage and cognitive impairments. Mechanistically, FTO interacts synergistically with the reader YTHDF3 to facilitate the degradation of GRIN1 and GRIN3B through the m6A modification pathway. Additionally, Mn decreases the phosphorylation of SOX2, which specifically impairs the transcriptional regulation of FTO activity. Additionally, we found that the natural compounds artemisinin and apigenin that can bind molecularly with SOX2 and reduce Mn-induced cognitive dysfunction in mice. Our findings suggest that the SOX2-FTO-Grins axis represents a viable target for addressing Mn-induced neurotoxicity and cognitive impairments.
Collapse
Affiliation(s)
- Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Zhushan Fu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Mingyue Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jingqi Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Yue Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sihang Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Institute of Health Professions Education Assessment and Reform, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Li B, Bo S, Sheng Z, Zhu H, Jiang Y, Yang B. Hepatoprotective Activity and Mechanisms of Prenylated Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1618-1629. [PMID: 38189644 DOI: 10.1021/acs.jafc.3c09515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dietary prenylated stilbenoids, found in various food sources, offer multiple health benefits, including liver protection. However, the underlying mechanisms of hepatoprotection remain unclear. In this study, we synthesized 13 natural prenylated stilbenoids and examined their hepatoprotective activities, with silent mating type information regulation 2 homologue-1 (SIRT1) as the primary target for screening. Among all of the prenylated stilbenoids tested, 4-C-geranyl oxyresveratrol demonstrated superior performance. It activated SIRT1 activity more effectively than resveratrol, a well-known SIRT1 activator. To further investigate the mechanism of liver protection, two in vitro models were used: the palmitic acid-induced lipid accumulation model and the H2O2-induced apoptosis model. Our findings suggested that 4-C-geranyl oxyresveratrol mitigated lipid accumulation through the SIRT1-PGC1α pathway, reduced apoptosis via the SIRT1-p53-p21 pathway, and exerted antioxidant effects through the SIRT1-Nrf2 pathway. These findings provide new insights into the chemical basis of the health benefits of prenylated stilbenoids and their potential use as functional food additives.
Collapse
Affiliation(s)
- Bailin Li
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengtao Bo
- Zhaoqing Public Security Judicial Appraisal Center, Zhaoqing 526000, China
| | - Zhili Sheng
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Liu Y, Yang Q, Guo Y, Jiang Y, Zhu H, Yang B. New insights of flavonoid glycosidases and their application in food industry. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 38117083 DOI: 10.1080/10408398.2023.2294167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flavonoids are significant natural nutraceuticals and a key component of dietary supplements. Given that flavonoid glycosides are more plentiful in nature and less beneficial to human health than their aglycone counterparts, they serve as potential precursors for flavonoid production. Glycosidases have shown substantial potential within the food industry, particularly in enhancing the organoleptic properties of juice, wine, and tea. When applied to food resources, glycosidases can amplify their biological activities, thereby improving the performance of functional foods. This review provides up-to-date information on flavonoid glycosidases, including their catalytic mechanisms, biochemical properties, and natural sources, as well as their applications within the food industry. The use of flavonoid glycosidases in improving food quality is also reviewed.
Collapse
Affiliation(s)
- Yingjun Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuxia Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yushan Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Functional Food Group, South China National Botanical Garden, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Bo S, Kiat Chang S, Shan Y, Chen Y, Liu H, Li B, Jiang Y, Zhu H, Yang B. The bioactivity of prenylated stilbenoids and their structure-activity relationship. Food Res Int 2022; 157:111275. [DOI: 10.1016/j.foodres.2022.111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|