1
|
Singh N, Yadav SS. Nanotechnological advancement in spices adulteration detection and authenticity validation. Food Control 2025; 167:110806. [DOI: 10.1016/j.foodcont.2024.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Hu J, Chen CH, Wang L, Zhang MR, Li Z, Tang M, Liu C. Multi-functional nanozyme-based colorimetric, fluorescence dual-mode assay for Salmonella typhimurium detection in milk. Mikrochim Acta 2024; 191:464. [PMID: 39007936 DOI: 10.1007/s00604-024-06539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.
Collapse
Affiliation(s)
- Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Chao-Hui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Mao-Rong Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man Tang
- School of Electronic and Electrical Engineering, Hubei Engineering and Technology Research Centre for Functional Fibre Fabrication and Testing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Salehi A, Hosseinpour S, Tabatabaei N, Soltani Firouz M, Yu T. Intelligent Navigation of a Magnetic Microrobot with Model-Free Deep Reinforcement Learning in a Real-World Environment. MICROMACHINES 2024; 15:112. [PMID: 38258231 PMCID: PMC10818667 DOI: 10.3390/mi15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Microrobotics has opened new horizons for various applications, especially in medicine. However, it also witnessed challenges in achieving maximum optimal performance. One key challenge is the intelligent, autonomous, and precise navigation control of microrobots in fluid environments. The intelligence and autonomy in microrobot control, without the need for prior knowledge of the entire system, can offer significant opportunities in scenarios where their models are unavailable. In this study, two control systems based on model-free deep reinforcement learning were implemented to control the movement of a disk-shaped magnetic microrobot in a real-world environment. The training and results of an off-policy SAC algorithm and an on-policy TRPO algorithm revealed that the microrobot successfully learned the optimal path to reach random target positions. During training, the TRPO exhibited a higher sample efficiency and greater stability. The TRPO and SAC showed 100% and 97.5% success rates in reaching the targets in the evaluation phase, respectively. These findings offer basic insights into achieving intelligent and autonomous navigation control for microrobots to advance their capabilities for various applications.
Collapse
Affiliation(s)
- Amar Salehi
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agriculture, University of Tehran, Karaj 31587-77871, Iran; (A.S.); (M.S.F.)
| | - Soleiman Hosseinpour
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agriculture, University of Tehran, Karaj 31587-77871, Iran; (A.S.); (M.S.F.)
| | - Nasrollah Tabatabaei
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
| | - Mahmoud Soltani Firouz
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agriculture, University of Tehran, Karaj 31587-77871, Iran; (A.S.); (M.S.F.)
| | - Tingting Yu
- Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China;
| |
Collapse
|
4
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Dekanovsky L, Huang H, Akir S, Ying Y, Sofer Z, Khezri B. Light-Driven MXene-Based Microrobots: Mineralization of Bisphenol A to CO 2 and H 2 O. SMALL METHODS 2023; 7:e2201547. [PMID: 37075736 DOI: 10.1002/smtd.202201547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2 O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (≈100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2 O.
Collapse
Affiliation(s)
- Lukas Dekanovsky
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
| | - Bahareh Khezri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16822, Prague, Czech Republic
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, Tarragona, 43007, Spain
| |
Collapse
|
6
|
Kang Y, Shi S, Sun H, Dan J, Liang Y, Zhang Q, Su Z, Wang J, Zhang W. Magnetic Nanoseparation Technology for Efficient Control of Microorganisms and Toxins in Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16050-16068. [PMID: 36533981 DOI: 10.1021/acs.jafc.2c07132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Outbreaks of foodborne diseases mediated by food microorganisms and toxins remain one of the leading causes of disease and death worldwide. It not only poses a serious threat to human health and safety but also imposes a huge burden on health care and socioeconomics. Traditional methods for the removal and detection of pathogenic bacteria and toxins in various samples such as food and drinking water have certain limitations, requiring a rapid and sensitive strategy for the enrichment and separation of target analytes. Magnetic nanoparticles (MNPs) exhibit excellent performance in this field due to their fascinating properties. The strategy of combining biorecognition elements with MNPs can be used for fast and efficient enrichment and isolation of pathogens. In this review, we describe new trends and practical applications of magnetic nanoseparation technology in the detection of foodborne microorganisms and toxins. We mainly summarize the biochemical modification and functionalization methods of commonly used magnetic nanomaterial carriers and discuss the application of magnetic separation combined with other instrumental analysis techniques. Combined with various detection techniques, it will increase the efficiency of detection and identification of microorganisms and toxins in rapid assays.
Collapse
Affiliation(s)
- Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|