1
|
Bakinowska E, Stańska W, Kiełbowski K, Szwedkowicz A, Boboryko D, Pawlik A. Gut Dysbiosis and Dietary Interventions in Rheumatoid Arthritis-A Narrative Review. Nutrients 2024; 16:3215. [PMID: 39339815 PMCID: PMC11435214 DOI: 10.3390/nu16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. The pathogenesis of RA is complex and involves interactions between articular cells, such as fibroblast-like synoviocytes, and immune cells. These cells secrete pro-inflammatory cytokines, chemokines, metalloproteinases and other molecules that together participate in joint degradation. The current evidence suggests the important immunoregulatory role of the gut microbiome, which can affect susceptibility to diseases and infections. An altered microbiome, a phenomenon known as gut dysbiosis, is associated with the development of inflammatory diseases. Importantly, the profile of the gut microbiome depends on dietary habits. Therefore, dietary elements and interventions can indirectly impact the progression of diseases. This review summarises the evidence on the involvement of gut dysbiosis and diet in the pathogenesis of RA.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
3
|
Pedrosa LDF, Fabi JP. Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science. PLANTS (BASEL, SWITZERLAND) 2024; 13:1721. [PMID: 38999561 PMCID: PMC11243750 DOI: 10.3390/plants13131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Plants are a core part of cultural identity, as part of a diet, decorations, ceremonies, or as medicinal agents. Empirical knowledge regarding plants and their healing potential has existed worldwide for centuries. With the advance of science and technology, not only is the refinement of such sources or isolation of specific compounds possible, but these compounds can also be characterized based on their natural occurrence. Besides their importance for plant metabolism and structure, polysaccharides have been demonstrated to have substantial positive human health impacts on inflammation, metabolism, oxidative stress, and others. As an inherent part of plant cell walls, many polysaccharides from medicinal herbs, such as fructans, glucans, and pectins, have been extracted and analyzed for their structure and function. However, a review summarizing a significant portion of these studies was still unavailable. This review helps to fill the knowledge gap between polysaccharide bioactivity, their structure, and their plant matrix sources, focusing on historical medicinal usage.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers), Sâo Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
Liu X, Wang B, Tang S, Yue Y, Xi W, Tan X, Li G, Bai J, Huang L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int J Biol Macromol 2024; 269:131798. [PMID: 38677689 DOI: 10.1016/j.ijbiomac.2024.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Citrus fiber, a by-product of citrus processing that has significant nutritional and bioactive properties, has gained attention as a promising raw material with extensive developmental potential in the food, pharmaceutical, and feed industries. However, the lack of in-depth understanding regarding citrus fiber, including its structure, modification, mechanism of action, and potential applications is holding back its development and utilization in functional foods and drugs. This review explores the status of extraction methods and modifications applied to citrus fiber to augment its health benefits. With the aim of introducing readers to the potential health benefits of citrus fibers, we have placed special emphasis on their regulatory mechanisms in the context of various conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity, and cancer. Furthermore, this review highlights the applications and prospects of citrus fiber, aiming to provide a theoretical basis for the utilization and exploration of this valuable resource.
Collapse
Affiliation(s)
- Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD., Jinan 250000, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
5
|
Jin D, Lu Y, Wu W, Jiang F, Li Z, Xu L, Zhang R, Li X, Chen D. Diet-Wide Association, Genetic Susceptibility and Colorectal Cancer Risk: A Prospective Cohort Study. Nutrients 2023; 15:4801. [PMID: 38004195 PMCID: PMC10674290 DOI: 10.3390/nu15224801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Both genetic and dietary factors play significant roles in the etiology of colorectal cancer (CRC). To evaluate the relationship between certain food exposures and the risk of CRC, we carried out a large-scale association analysis in the UK Biobank. METHODS The associations of 139 foods and nutrients' intake with CRC risk were assessed among 118,210 participants. A polygenic risk score (PRS) of CRC was created to explore any interaction between dietary factors and genetic susceptibility in CRC risk. The hazard ratio (HR) and 95% confidence interval (CI) of CRC risk linked to dietary variables and PRS were estimated using Cox regression models. Multiple comparisons were corrected using the error discovery rate (FDR). RESULTS During a mean follow-up of 12.8 years, 1466 incidents of CRC were identified. In the UK Biobank, alcohol and white bread were associated with increased CRC risk, and their HRs were 1.08 (95% CI: 1.03-1.14; FDRP = 0.028) and 1.10 (95% CI: 1.05-1.16; FDRP = 0.003), whereas dietary fiber, calcium, magnesium, phosphorus, and manganese intakes were inversely associated. We found no evidence of any PRS-nutrient interaction relationship in relation to CRC risk. CONCLUSIONS Our results show that higher intakes of alcohol and white bread are associated with increased CRC risk, whilst dietary fiber, calcium, magnesium, phosphorus, and manganese are inversely associated.
Collapse
Affiliation(s)
- Dongqing Jin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China;
| | - Ying Lu
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
| | - Zihan Li
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
| | - Liying Xu
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
| | - Rongqi Zhang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; (Y.L.)
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China;
| |
Collapse
|
6
|
Pedrosa LDF, de Vos P, Fabi JP. Nature's soothing solution: Harnessing the potential of food-derived polysaccharides to control inflammation. Curr Res Struct Biol 2023; 6:100112. [PMID: 38046895 PMCID: PMC10692654 DOI: 10.1016/j.crstbi.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Reducing inflammation by diet is a major goal for prevention or lowering symptoms of a variety of diseases, such as auto-immune reactions and cancers. Natural polysaccharides are increasingly gaining attention due to their potential immunomodulating capacity. Structures of those molecules are highly important for their effects on the innate immune system, cytokine production and secretion, and enzymes in immune cells. Such polysaccharides include β-glucans, pectins, fucoidans, and fructans. To better understand the potential of these immunomodulatory molecules, it is crucial to enhance dedicated research in the area. A bibliometric analysis was performed to set a starting observation point. Major pillars of inflammation, such as pattern recognition receptors (PRRs), enzymatic production of inflammatory molecules, and involvement in specific pathways such as Nuclear-factor kappa-B (NF-kB), involved in cell transcription, survival, and cytokine production, and mitogen-activated protein kinase (MAPK), a regulator of genetic expression, mitosis, and cell differentiation. Therefore, the outcomes from polysaccharide applications in those scenarios are discussed.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (ForC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|