1
|
Huang J, Li H, Yang X, Qian C, Wei Y, Sun M. The relationship between dietary inflammatory index (DII) and early renal injury in population with/without hypertension: analysis of the National health and nutrition examination survey 2001-2002. Ren Fail 2024; 46:2294155. [PMID: 38178375 PMCID: PMC10773634 DOI: 10.1080/0886022x.2023.2294155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Inflammation plays a crucial role in occurrence of kidney injury, and specific dietary patterns can influence systemic inflammation levels. However, the relationship between dietary inflammatory potential and early-stage kidney damage remains unclear. METHOD 2,108 participants was recruited from 2001-2002 National Health and Nutrition Examination Survey (NHANES). Dietary Inflammatory Index (DII) is utilized to assess dietary inflammatory potential, calculated through a 24-h dietary recall questionnaire. Early renal injury was evaluated using urinary albumin to creatinine (UACR), cystatin C (CysC), β-2 microglobulin (β2M), and estimated glomerular filtration rate (eGFR) based on serum creatinine (eGFRs), cystatin C (eGFRc), and both Scr and CysC (eGFRs&c). Participant characteristics were analyzed, and association between DII, hypertension, and early renal injury markers was explored using multiple linear and logistic regression models. RESULTS The average age of participants was 53.9 years. DII exhibited a positive correlation with UACR (β = -0.048[0.017,0.078]), β2M (β = 0.019[0.010,0.027]), CysC (β = 0.012 [0.004,0.021]). Conversely, a negative correlation was observed between DII and eGFRc (β = -1.126[-1.554, -0.699]), eGFRs&c (β=-1.101[-1.653, -0.549]). A significant association was observed between hypertension and abnormality of early kidney damage markers. Subgroup analysis reveals that the positive correlation between DII and the occurrence of abnormal markers of early kidney damage is only observed in individuals with hypertension. Furthermore, an interaction between DII and hypertension was detected in eGFRs&c (OR:1.250[1.042, 1.499], p for interaction = 0.03). CONCLUSION Higher levels of DII may be associated with occurrence of early kidney damage. For individuals with hypertension, avoiding excessive consumption of pro-inflammatory foods may reduce the risk of renal injury.
Collapse
Affiliation(s)
- Jingda Huang
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Huimin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Xu Yang
- Department of Neurology, People’s hospital of Jilin province, Changchun, China
| | - Chuyue Qian
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Yihui Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mindan Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Li F, Wang Z, Tang T, Zhao Q, Wang Z, Han X, Xu Z, Chang Y, Li H, Hu S, Yu C, Chang S, Liu Y, Li Y. From serum metabolites to the gut: revealing metabolic clues to susceptibility to subtypes of Crohn's disease and ulcerative colitis. Front Endocrinol (Lausanne) 2024; 15:1375896. [PMID: 39175573 PMCID: PMC11338916 DOI: 10.3389/fendo.2024.1375896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aims Inflammatory bowel disease (IBD) is a common chronic inflammatory bowel disease characterized by diarrhea and abdominal pain. Recently human metabolites have been found to help explain the underlying biological mechanisms of diseases of the intestinal system, so we aimed to assess the causal relationship between human blood metabolites and susceptibility to IBD subtypes. Methods We selected a genome-wide association study (GWAS) of 275 metabolites as the exposure factor, and the GWAS dataset of 10 IBD subtypes as the outcome, followed by univariate and multivariate analyses using a two-sample Mendelian randomization study (MR) to study the causal relationship between exposure and outcome, respectively. A series of sensitivity analyses were also performed to ensure the robustness of the results. Results A total of 107 metabolites were found to be causally associated on univariate analysis after correcting for false discovery rate (FDR), and a total of 9 metabolites were found to be significantly causally associated on subsequent multivariate and sensitivity analyses. In addition we found causal associations between 7 metabolite pathways and 6 IBD subtypes. Conclusion Our study confirms that blood metabolites and certain metabolic pathways are causally associated with the development of IBD subtypes and their parenteral manifestations. The exploration of the mechanisms of novel blood metabolites on IBD may provide new therapeutic ideas for IBD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhaodi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Xiaoping Han
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zifeng Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Sileng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Chanjiao Yu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Shiyu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yue Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wu Q, Lin H, Shen W, Cao W, Qin X, Gao J, Chen Z, Zheng H, Zhong S, Huang H. The Preventive Effect of Low-Molecular Weight Oyster Peptides on Lipopolysaccharide-Induced Acute Colitis in Mice by Modulating Intestinal Microbiota Communities. Foods 2024; 13:2391. [PMID: 39123582 PMCID: PMC11311859 DOI: 10.3390/foods13152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Colitis causes inflammation, diarrhoea, fever, and other serious illnesses, posing a serious threat to human health and safety. Current medications for the treatment of colitis have serious side effects. Therefore, the new strategy of creating a defence barrier for immune function by adding anti-inflammatory foods to the daily diet is worth advocating for. Low-molecular weight oyster peptides (LOPs) are a natural food with anti-inflammatory activity extracted from oysters, so intervention with LOPs is likely to be an effective preventive solution. The aim of this study was to investigate the preventive effect of LOPs on lipopolysaccharide (LPS)-induced acute colitis inflammation in mice and its underlying mechanism. The results showed that LOPs not only inhibited the colonic histopathy in mice induced by LPS-induced inflammation but also reduced the inflammatory response in the blood. In addition, LOPs significantly increased the number of beneficial bacteria (Alistipes, Mucispirillum, and Oscillospira), decreased the number of harmful bacteria (Coprobacillus, Acinetobater) in the intestinal microbiota, and further affected the absorption and utilisation of short-chain fatty acids (SCFAs) in the intestinal tract. In conclusion, dietary supplementation with LOPs is a promising health-promoting dietary supplement and nutraceutical for the prevention of acute colitis by reducing the inflammatory response and modulating the intestinal microbial communities.
Collapse
Affiliation(s)
- Qihang Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoyang Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| |
Collapse
|
4
|
Han M, Liang J, Hou M, Liu Y, Li H, Gao Z. Bifidobacterium bifidum Ameliorates DSS-Induced Colitis in Mice by Regulating Microbial Metabolome and Targeting Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38838169 DOI: 10.1021/acs.jafc.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent inflammatory condition affecting the gastrointestinal tract, and its clinical treatment remains suboptimal. Probiotics have shown effectiveness in alleviating dextran sulfate sodium salt (DSS)-induced colitis, exhibiting strain-specific anti-inflammatory properties. In this study, we compared the therapeutic effects of five strains of Bifidobacterium bifidum isolated from healthy adult feces on DSS-induced colitis in mice. Additionally, we investigated the underlying mechanisms by examining gut microbiota composition and microbial metabolome. Our findings highlighted the superior efficacy of B. bifidum M1-3 compared to other strains. It significantly improved colitis symptoms, mitigated gut barrier disruption, and reduced colonic inflammation in DSS-treated mice. Moreover, gut microbiota composition analysis revealed that B. bifidum M1-3 treatment increased the abundance and diversity of gut microbiota. Specifically, it significantly increased the abundance of Muribaculaceae, Lactobacillus, Bacteroides, and Enterorhabdus, while decreasing the abundance of Escherichia-Shigella. Furthermore, our nontargeted metabolomics analysis illustrated that B. bifidum M1-3 treatment had a regulatory effect on various metabolic pathways, including tyrosine metabolism, lysine degradation, and tryptophan metabolism. Importantly, we confirmed that the therapeutic efficiency of B. bifidum M1-3 was dependent on the gut microbiota. These results are conducive to the development of probiotic products for alleviating colitis.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yuanye Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| |
Collapse
|
5
|
Ge H, Yang Q, Lyu S, Du Z, Liu X, Shang X, Xu M, Liu J, Zhang T. Egg White Peptides Accelerating the Wound Healing Process Through Modulating the PI3K-AKT Pathway: A Joint Analysis of Transcriptomic and Proteomic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4100-4115. [PMID: 38373195 DOI: 10.1021/acs.jafc.3c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Wound healing is a multiphase process with a complex repair mechanism; trauma-repairing products with safety and high efficiency have a great market demand. Egg white peptides (EWP) have various physiological regulatory functions and have been proven efficient in ameliorating skin damage. However, their underlying regulation mechanism has not been revealed. This study further evaluated the EWP ameliorating mechanism by conducting a full-thickness skin wound model. Results demonstrated that EWP administration significantly inhibited the expression of pro-inflammatory and shortened the inflammatory phase. Besides, EWP can accelerate the secretion of growth factors (PDGF, VEGF, and TGF-β1) in skin tissue, significantly increasing the regeneration of granulation tissue and endothelium in the proliferation phase, thereby promoting wound healing. After 400 mg/kg EWP interventions for 13 days postoperation, the wound healing rate reached 90%. The combination of transcriptomic and proteomic analyses demonstrated the ameliorating efficiency effects of EWP on wound healing. EWP mainly participates in the functional network with the PI3K-AKT signaling pathway as the core to accelerate wound healing. These findings suggest a promising EWP-based strategy for accelerating wound healing.
Collapse
Affiliation(s)
- Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
6
|
Wang L, Wu S, Chen T, Xiong L, Wang F, Song H, Zhou J, Wei S, Ren B, Shen X. A quinoa peptide protects impaired mucus barriers in colitis mice by inhibiting NF-κB-TRPV1 signaling and regulating the gut microbiota. Food Funct 2024; 15:1223-1236. [PMID: 38226896 DOI: 10.1039/d3fo04905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that lead to the disruption of the colonic mucus barrier. Quinoa has a well-balanced profile of essential amino acids and exhibits excellent anti-inflammatory effects. We recently explored the beneficial effects and relevant mechanisms of a novel quinoa peptide TPGAFF on impaired mucus barriers in mice with chemically induced colitis. Our findings demonstrated that TPGAFF, administered in low and high doses for 28 days, effectively attenuated the pathological phenotype and reduced intestinal permeability in colitis mice. TPGAFF demonstrated its protective abilities by restoring the impaired mucus barrier, inhibiting the activation of inflammatory signaling and reducing inflammatory cytokine levels. Moreover, TPGAFF positively influenced the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, TPGAFF inhibited the activation of TRPV1 nociceptor and decreased the levels of neuropeptides. Conclusively, our results indicated that oral administration of TPGAFF may be an optional approach for the treatment of mucus barrier damage.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shufeng Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Tong Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jianxin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shixiang Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
7
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|