1
|
Cao J, Shi T, Wang Y, Wang J, Cao F, Yu P, Su E. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts as an emerging source of protein: extraction, physicochemical and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8756-8768. [PMID: 38940359 DOI: 10.1002/jsfa.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The increasing demand for sustainable alternatives to traditional protein sources, driven by population growth, underscores the importance of protein in a healthy diet. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts are currently underutilized as plant-based proteins but hold great potential in the food industry. However, there is insufficient information available on pecan protein, particularly its protein fractions. This study aimed to explore the physicochemical and functional properties of protein isolate and the main protein fraction glutelin extracted from pecan nuts. RESULTS The results revealed that glutelin (820.67 ± 69.42 g kg-1) had a higher crude protein content compared to the protein isolate (618.43 ± 27.35 g kg-1), while both proteins exhibited amino acid profiles sufficient for adult requirements. The isoelectric points of protein isolate and glutelin were determined to be pH 4.0 and pH 5.0, respectively. The denaturation temperature of the protein isolate (90.23 °C) was higher than that of glutelin (87.43 °C), indicating a more organized and stable conformation. This is further supported by the fact that the protein isolate had a more stable main secondary structure than glutelin. Both proteins demonstrated improved solubility, emulsifying, and foaming properties at pH levels deviating from their isoelectric points in U-shaped curves. Compared to the protein isolate, glutelin displayed superior water and oil absorption capacity along with enhanced gelling ability. CONCLUSION The protein isolate and glutelin from pecan nuts exhibited improved stability and competitive functional properties, respectively. The appropriate utilization of these two proteins will support their potential as natural ingredients in various food systems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahong Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengfei Yu
- Suining County Runqi Investment Co., Ltd, Xuzhou, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Benmebarek IE, Gonzalez-Serrano DJ, Aghababaei F, Ziogkas D, Garcia-Cruz R, Boukhari A, Moreno A, Hadidi M. Optimizing the microwave-assisted hydrothermal extraction of pectin from tangerine by-product and its physicochemical, structural, and functional properties. Food Chem X 2024; 23:101615. [PMID: 39669899 PMCID: PMC11637218 DOI: 10.1016/j.fochx.2024.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 12/14/2024] Open
Abstract
Microwave-assisted hydrothermal extraction (MAHE) was optimized using a Box-Behnken design (BBD) of the response surface methodology (RSM) for optimal recovery of pectin from tangerine peel (TPP). The effects of three factors (pH, irradiation time and temperature) on extraction yield (EY), galacturonic acid content (GAC) and degree of esterification (DE) of pectin were investigated. The optimal extraction conditions were as follows: pH 1.7, irradiation time 12 min and temperature 109 °C. Under these conditions, the EY, GAC and DE were 30.4, 72.3 and 45.2%, respectively. The low methoxyl content of MHAE (45.2%) compared to CE is confirmed by the 1H NMR and FTIR spectra, and the emulsifying activity is 57.65% and 50.56% for CE and MHAE, respectively. The total phenolic content (TPC) of pectin produced using MAHE is 41.2 mg GAE/g, thus indicating higher antioxidant properties compared to pectin produced with CE, which had a TPC of 38.4 mg GAE/g. In addition, the X-ray diffraction (XRD) and surface morphological analysis (SEM) results showed that TPP had a rough surface and crystalline structure. Overall, our findings show that TTP from MAHE can be used as a natural antioxidant ingredient in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Imed E. Benmebarek
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, BP 12, 23000 Annaba, Algeria
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Diego J. Gonzalez-Serrano
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | - Dimitrios Ziogkas
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rosario Garcia-Cruz
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Abbas Boukhari
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, BP 12, 23000 Annaba, Algeria
| | - Andres Moreno
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
3
|
Brai A, Neri C, Tarchi F, Poggialini F, Vagaggini C, Frosinini R, Simoni S, Francardi V, Dreassi E. Upcycling Milk Industry Byproducts into Tenebrio molitor Larvae: Investigation on Fat, Protein, and Sugar Composition. Foods 2024; 13:3450. [PMID: 39517234 PMCID: PMC11545053 DOI: 10.3390/foods13213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Edible insects represent a growing sector of the food industry and have a low carbon footprint. Noteworthy, insects can upcycle different leftovers and byproducts into high-quality nutrients. Herein, the larvae of the edible insect Tenebrio molitor (TML) were fed using local milk industry byproducts. Mozzarella whey and whey permeate obtained in cheese production were used to formulate three alternative diets. Both byproducts are rich in sugars, in particular the disaccharide lactose and the monosaccharides glucose and galactose. Two of the three diets did not interfere with biometric data and vitality, while the use of whey permeate alone significantly reduced development. At the end of the trial, the proximate composition of TML was strongly affected, with an increased protein content of up to +7% and a favorable fat composition. The analysis of secondary metabolites revealed the accumulation of different compounds, in particular monounsaturated fatty acids (MUFAs), amino acids, and the disaccharide trehalose, essential for the correct larval development and pupation. In conclusion, the present study demonstrates that milk industry byproducts can be upcycled as feed for TML, maintaining an optimal nutrient composition and favorably increasing the protein content.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Cassia Neri
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Franca Tarchi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Federica Poggialini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Chiara Vagaggini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Riccardo Frosinini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Sauro Simoni
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Valeria Francardi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| |
Collapse
|
4
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
5
|
Kostrakiewicz-Gierałt K. Plant-Based Proteins, Peptides and Amino Acids in Food Products Dedicated for Sportspeople-A Narrative Review of the Literature. Nutrients 2024; 16:1706. [PMID: 38892638 PMCID: PMC11175001 DOI: 10.3390/nu16111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Plant proteins are increasingly seen as critical nutrient sources for both amateur and professional athletes. The aim of the presented study was to review the inventions and experimental articles referring to the application of plant-based proteins, peptides and amino acids in food products dedicated to sportspeople and published in the period 2014-2023. The literature search was conducted according to PRISMA statementsacross several key databases, including Scopus and ISI Web of Science. Altogether, 106 patents and 35 original articles were found. The survey of patents and inventions described in the articles showed the use of 52 taxa (mainly annual herbaceous plants), creating edible seeds and representing mainly the families Fabaceae and Poaceae. The majority of inventions were developed by research teams numbering from two to five scientists, affiliated in China, The United States of America and Japan. The greatest number of inventions applied plant-based proteins (especially protein isolates), declared the nutritional activity and were prepared in liquid or solid consistency. According to the reviewed studies, the intake of soybean and potato proteins might provide better results than animal-based protein (excluding resistance training), whereas the consumption of pea and rice protein does not possess any unique anabolic properties over whey protein. The analysis of other investigations demonstrated the varied acceptability and consumption of food products, while the high rating of the tested food products presented in four articles seems to be an effect of their sensual values, as well as other elements, such as production method, health benefits and cost-effectiveness. Considering the great potential of useful plant species, it might be concluded that future investigations focusing on searching for novel plant protein sources, suitable for the preparation of food products dedicated to amateur and professional sportspeople, remain of interest.
Collapse
Affiliation(s)
- Kinga Kostrakiewicz-Gierałt
- Department of Tourism Geography and Ecology, Institute of Tourism, Faculty of Tourism and Recreation, University of Physical Education in Kraków, Jana Pawła II 78, 31-571 Kraków, Poland
| |
Collapse
|
6
|
Wei WL, Wang WJ, Chen H, Lin SY, Luo QS, Li JM, Yan J, Chen LL. A promising Artemisia capillaris Thunb. Leaf proteins with high nutrition, applicable function and excellent antioxidant activity. Food Chem X 2024; 21:101153. [PMID: 38317669 PMCID: PMC10838694 DOI: 10.1016/j.fochx.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
The nutritional and functional properties of leaf proteins is a decisive factor for their use in food. This work was aimed to extract defatted Artemisia capillaris Thunb. (ACD) leaf proteins (ACLP), and assess ACLP nutritional quality, functional properties and in vitro antioxidant activity, as well characterize the structure. ACLP had a balanced amino acid profile and high bioavailability (protein digestibility corrected amino acid score (PDCAAS) 99.29 %). Solubility, foaming capacity and emulsifying ability of ACLP correlated positively with pH. Water and oil holding capacity were increased with temperature. Gel electrophoresis shown the protein molecular size was mainly ∼25 kDa, and random coil was the mainly secondary structure while β-sheet was dominant regular conformation as indicated by circular dichroism (CD). ACLP performed in vitro antioxidant activity which was better after digestion. All data implied ACLP met the WHO/FAO protein quality expectations and had application potential in food.
Collapse
Affiliation(s)
- Wen-Lu Wei
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Su-Yun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiu-Shui Luo
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian-Ming Li
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Yan
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Gómez MJR, Magro PC, Blázquez MR, Maestro-Gaitán I, Iñiguez FMS, Sobrado VC, Prieto JM. Nutritional composition of quinoa leafy greens: An underutilized plant-based food with the potential of contributing to current dietary trends. Food Res Int 2024; 178:113862. [PMID: 38309894 DOI: 10.1016/j.foodres.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 02/05/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) leafy greens (QLGs) are plant-based foods of high nutritional value that have been scarcely studied. In this work, the nutritional and functional composition of three QLGs varieties was evaluated. A protein content higher than 35 g 100 g-1 dw with a well-balanced essential amino acid composition was found making them a good source of vegetable protein. In addition, elevated contents of dietary fibre and minerals, higher than those detected in quinoa seeds and other leafy vegetables, were found. The lipid profile showed higher contents of linoleic (C18:2, ω6) (20.2 %) and linolenic acids (C18:3, ω3) (52.8 %) with low ω6/ ω3 ratios (∼0.4/1). A total sugar content <1 g 100 g-1 dw was found for all varieties tested, lower than that obtained in seeds. The saponin content varied between 0.76 and 0.87 %. Also, high values of total phenolic compounds (969.8-1195.4 mg gallic acid 100 g-1), mainly hydroxycinnamic acids and flavonoids, and great antioxidant activities (7.64-8.90 g Trolox kg-1) were found. Multivariate analysis here used allowed us to classify the samples according to the quinoa variety evaluated, and the sequential stepwise multiple regression applied revealed that the PUFA and sucrose contents negatively influenced the protein content while the palmitic acid content affected positively this parameter. Overall, this study shows that QLGs are promising nutritious and functional plant-based foods supporting the necessity of promoting their cultivation, commercialization, and consumption.
Collapse
Affiliation(s)
- M José Rodríguez Gómez
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain.
| | - Patricia Calvo Magro
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - María Reguera Blázquez
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isaac Maestro-Gaitán
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F M Sánchez Iñiguez
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - Verónica Cruz Sobrado
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| | - Javier Matías Prieto
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| |
Collapse
|
8
|
Aghababaei F, McClements DJ, Martinez MM, Hadidi M. Electrospun plant protein-based nanofibers in food packaging. Food Chem 2024; 432:137236. [PMID: 37657333 DOI: 10.1016/j.foodchem.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is a relatively simple technology capable to produce nano- and micron-scale fibers with different properties depending on the electrospinning conditions. This review critically investigates the fabrication of electrospun plant protein nanofibers (EPPNFs) that can be used in food and food packaging applications. Recent progress in the development and optimization of electrospinning techniques for production of EPPNFs is discussed. Finally, current challenges to the implementation of EPPNFs in food and food packaging applications are highlighted, including potential safety and scalability issues. The production of plant protein nanofibers and microfibers is likely to increase in the future as many industries wish to replace synthetic materials with more sustainable, renewable, and environmentally friendly biopolymers. It is therefore likely that EPPNFs will find increasing applications in various fields including active food packaging and drug delivery.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | | | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|