1
|
Arjun OK, Sethi M, Parida D, Dash J, Kumar Das S, Prakash T, Senapati S. Comprehensive physiological and genomic characterization of a potential probiotic strain, Lactiplantibacillus plantarum ILSF15, isolated from the gut of tribes of Odisha, India. Gene 2024; 931:148882. [PMID: 39182659 DOI: 10.1016/j.gene.2024.148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Characterizing probiotic features of organisms isolated from diverse environments can lead to the discovery of novel strains with promising functional features and health attributes. The present study attempts to characterize a novel probiotic strain isolated from the gut of the tribal population of Odisha, India. Based on 16S rRNA-based phylogeny, the strain was identified as a species of the Lactiplantibacillus genus and was named Lactiplantibacillus plantarum strain ILSF15. The current investigation focuses on elucidating this strain's genetic and physiological properties associated with probiotic attributes such as biosafety risk, host adaptation/survival traits, and beneficial functional features. The novel strain was observed, in vitro, exhibiting features such as acid/bile tolerance, adhesion to the host enteric epithelial cells, cholesterol assimilation, and pathogen exclusion, indicating its ability to survive the harsh environment of the human GIT and resist the growth of harmful microorganisms. Additionally, the L. plantarum ILSF15 strain was found to harbor genes associated with the metabolism and synthesis of various bioactive molecules, including amino acids, carbohydrates, lipids, and vitamins, highlighting the organism's ability to efficiently utilize diverse resources and contribute to the host's nutrition and health. Several genes involved in host adaptation/survival strategies and host-microbe interactions were also identified from the ILSF15 genome. Moreover, L. plantarum strains, in general, were found to have an open pangenome characterized by high genetic diversity and the absence of specific lineages associated with particular habitats, signifying its versatile nature and potential applications in probiotic and functional food industries.
Collapse
Affiliation(s)
- O K Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Jayalaxmi Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Suraja Kumar Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India.
| | | |
Collapse
|
2
|
Zhou X, Guo Z, Ling Y, Teng W, Cui J, Yan Z, Hou X, Cen W, Long N, Li W, Yang H, Chu L. Causal effect of air pollution on the risk of brain health and potential mediation by gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117080. [PMID: 39332203 DOI: 10.1016/j.ecoenv.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Epidemiologic investigations have examined the correlation between air pollution and neurologic disorders and neuroanatomic structures. Increasing evidence underscores the profound influence of the gut microbiota on brain health. However, the existing evidence is equivocal, and a causal link remains uncertain. This study aimed: to determine if there is a causal connection between four key air pollutants, and 42 neurologic diseases, and 1325 distinct brain structures; and to explore the potential role of the gut microbiota in mediating these associations. METHODS Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) models were deployed to estimate the causal impact of air pollutants (including particulate matter [PM] with aerodynamic diameters <2.5 μm [PM2.5], and <10 μm [PM10]; PM2.5 absorbance; and nitrogen oxides [NOx]) on brain health through various Mendelian randomization methodologies. Lastly, the mediating role of the gut microbiome in the connections between the identified pollutants and neurologic diseases and brain structures was systematically examined. RESULTS The potential causal associations of PM2.5, PM2.5 absorbance, PM10, and exposure to NOx, with the risks of intracerebral hemorrhage, hippocampal perivascular spaces, large artery strokes, generalized epilepsy with tonic-clonic seizures, Alzheimer's disease, multiple sclerosis, anorexia nervosa, post-traumatic stress disorder (PTSD), and 420 brain structures, were investigated by UVMR analysis. Following adjustment for air pollutants by MVMR analysis, the genetic correlations between PM10 exposure and PTSD and multiple sclerosis remained significant and robust. Importantly, we observed that phylum Lentisphaerae may mediate the association between PM10 and multiple sclerosis. Additionally, PM2.5 absorbance with a greater risk of reduced thickness in the left anterior transverse temporal gyrus of Heschl and a decreased area in the right sulcus intermedius primus of Jensen, mediated by genus Senegalimassilia and genus Lachnospiraceae UCG010, respectively. Finally, we provided evidence that Clostridium innocuum and genus Ruminococcus2 may partly mediate the causal effect of NOx on altered thickness in the left transverse temporal cortex and area in the right sulcus intermedius primus of Jensen, respectively. CONCLUSION This study established a genetic connection between air pollution and brain health, implicating the gut microbiota as a potential mediator in the relationship between air pollution, neurologic disorders, and altered brain structures.
Collapse
Affiliation(s)
- Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Zhengshan Guo
- The Institute of Public Administration, Southwest University of Finance and Economics, Chengdu, Sichuan, PR China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Wei Teng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Zhangwei Yan
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Xianwen Hou
- Department of Neurosurgery, Qianxi People's Hospital, Qianxi, Guizhou, PR China
| | - Wu Cen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Wenyan Li
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China.
| |
Collapse
|
3
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Ye M, Ji F, Huang C, Li F, Zhang C, Zhang Y, Wang R, Ma K, Lu X, Wang H. A novel probiotic formula, BLLL, ameliorates chronic stress-induced depression-like behaviors in mice by reducing neuroinflammation and increasing neurotrophic factors. Front Pharmacol 2024; 15:1398292. [PMID: 39130643 PMCID: PMC11310130 DOI: 10.3389/fphar.2024.1398292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction: Probiotics have been recognized for their various biological activities, including antioxidant and anti-inflammatory properties. This study investigates the therapeutic effect of a novel probiotic formula, BLLL, consisting of Bifidobacterium breve, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus helveticus, on chronic stress-induced depression-like behaviors in mice. Methods: The BLLL formula or phosphate-buffered saline (PBS) was given orally at a dose of 2, 4, or 8 × 1010 CFU/kg once daily for 10 days in mice treated with chronic unpredictable stress (CUS) treated or vehicle. Depression-like behaviors were assessed using the sucrose preference test (SPT), the forced swimming test (FST), and the tail suspension test (TST). The mRNA and/or protein expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), IL-4, IL-10, and chitinase-3-like protein 3 (CHI3L1, also known as Ym-1), as well as the concentration of nitrite, malondialdehyde (MDA), glutathione (GSH), and brain-derived neurotrophic factor (BDNF) in the hippocampus and medial prefrontal cortex were examined. Results: The BLLL formula treatment at a dose of 8 × 1010 CFU/kg, but not at a dose of 2 or 4 × 1010 CFU/kg, improved CUS-induced depression-like behaviors in mice, as shown by the decrease in immobility time in the TST and FST and the increase in sucrose intake in the SPT. Further analysis revealed that BLLL treatment suppressed the CUS-induced increase in IL-1β, IL-6, and TNF-α mRNA and protein levels, as well as the CUS-induced decrease in IL-4, IL-10, and Ym-1 mRNA and/or protein levels in the hippocampus and medial prefrontal cortex. In addition, treatment with the BLLL formula countered the CUS-induced increase in nitrite and MDA levels and the CUS-induced decrease in GSH content and BDNF concentration in the hippocampus and medial prefrontal cortex. Conclusion: These results demonstrate that the novel probiotic formula BLLL ameliorates chronic stress-induced depression-like behavior in mice by suppressing neuroinflammation and oxido-nitrosative stress in the brain.
Collapse
Affiliation(s)
- Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Feng Ji
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | | | - Yu Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Runxin Wang
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
5
|
Nie H, Wang X, Luo Y, Kong F, Mu G, Wu X. Mechanism Explanation on Improved Cognitive Ability of D-Gal Inducing Aged Mice Model by Lactiplantibacillus plantarum MWFLp-182 via the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9795-9806. [PMID: 38608178 DOI: 10.1021/acs.jafc.3c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Gut microbiota can influence cognitive ability via the gut-brain axis. Lactiplantibacillus plantarum MWFLp-182 (L. plantarum MWFLp-182) was obtained from feces of long-living individuals and could exert marked antioxidant ability. Interestingly, this strain reduced the D-galactose-induced impaired cognitive ability in BALB/c mice. To comprehensively elucidate the underlying mechanism, we evaluated the colonization, antioxidant, and anti-inflammatory activities of L. plantarum MWFLp-182, along with the expression of potential genes associated with cognitive ability influenced and gut microbiota. L. plantarum MWFLp-182 enhanced the expression of anti-inflammatory cytokines, reduced the expression of proinflammatory cytokines, and increased tight junction protein expression in the colon. Moreover, L. plantarum MWFLp-182 could modify the gut microbiota. Notably, treatment with L. plantarum MWFLp-182 upregulated the expression of postsynaptic density protein-95, nuclear factor erythroid 2-related factor, nerve growth factor, superoxide dismutase, and brain-derived neurotrophic factor/neuronal nuclei, while downregulating the expression of bcl-2-associated X and malondialdehyde in the hippocampus and upregulating short-chain fatty acids against D-galactose-induced mouse brain deficits. Accordingly, L. plantarum MWFLp-182 could improve cognitive ability in a D-galactose-inducing mouse model.
Collapse
Affiliation(s)
- Hui Nie
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| | - Xinxin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yanghe Luo
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi 542899, People's Republic of China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Dalian Probiotic Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
6
|
Jia L, Xiao L, Fu Y, Shao Z, Jing Z, Yuan J, Xie Y, Guo J, Wang Y, Geng W. Neuroprotective effects of probiotics on anxiety- and depression-like disorders in stressed mice by modulating tryptophan metabolism and the gut microbiota. Food Funct 2024; 15:2895-2905. [PMID: 38404190 DOI: 10.1039/d3fo03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Anxiety- and depression-like behaviors are commonly observed clinical features of depression and many other mental disorders. Recent evidence has revealed the crucial role of the microbiota-gut-brain axis in the bidirectional communication between the gastrointestinal tract and the central nervous system. Supplementation with psychobiotics may provide a novel approach for the adjunctive treatment of mental disorders by regulating the intestinal microecology. We isolated and identified a novel probiotic, Lactiplantibacillus plantarum D-9 (D-9), from traditional Chinese fermented foods in our previous work, which exhibited a high yield of gamma-aminobutyric acid (GABA). Herein, it was proved that the oral administration of D-9 could alleviate the depression- and anxiety-like behaviors of Chronic Unpredicted Mild Stress (CUMS) mice, and show non-toxicity or side-effects in the mice. Physiological and biochemical analyses demonstrated that D-9 regulated tryptophan metabolism, the HPA-axis and inflammation in CUMS mice. Moreover, D-9 modulated the structure and composition of the gut microbiota, leading to an increase in the relative abundance of Ligilactobacillus murinus and Lactobacillus johnsonii, and a decrease in the levels of Kineothrix alysoides and Helicobacter bilis compared to those in CUMS mice. Our work demonstrates that D-9 alleviated anxiety- and depression-like disorders in CUMS mice by modulating tryptophan metabolism and the gut microbiota. These findings provide an innovative strategy for the intervention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Ling Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yao Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhaoxuan Jing
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Jiahu Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yufeng Xie
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
- College of Food Science and Engineering, Harbin University, Harbin 150086, P. R. China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
7
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|