1
|
Bahetjan K, Yu-Xia, Lin S, Aili N, Yang H, Du S. Analysis of the bronchoalveolar lavage fluid microbial flora in COPD patients at different lung function during acute exacerbation. Sci Rep 2025; 15:13179. [PMID: 40240456 PMCID: PMC12003667 DOI: 10.1038/s41598-025-96746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
There is a correlation between the dysbiosis of the respiratory microbiota and the occurrence, severity, frequency, and mortality of Chronic Obstructive Pulmonary Disease (COPD). However, it is not unclear if there are differences in the bronchoalveolar lavage fluid (BALF) microbiota among patients at differente lung function. In this study, BALF samples were collected from 70 COPD patients experiencing acute exacerbations (AECOPD). The patients were divided into a mild group (FEV1/pre ≥ 50; PFT I, n = 50) and a severe group (FEV1/pre < 50; PFT II, n = 20) according to the lung function: or a frequent exacerbation (FE, n = 41) group and a non-frequent exacerbation (NFE, n = 29) group according to their exacerbation history. Microbiota analysis of BALF samples was conducted using mNGS and bioinfromatic analysis. Compared to PFT I group, PFT II group exhibited a significant decrease in species diversity (Shannon index), as well as a significant reduction in total species count and richness (Chao1, ACE indices). NFE group demonstrated diversity similar to that of FE group. Conversely, the microbial diversity of NFE group was comparable to that of FE group. The most abundant bacterial genera were Streptococcus, Prevotella, Veillonella, Rod-shaped Bacillus, and Rothia. Aspergillus was the most dominant fungal genus in AECOPD. Lymphocryptovirus was the most prevalent virus in AECOPD.Compared to the PFT I group, Corynebacterium's abundance significantly increased in PFT II group. Furthermore, FE group showed a notable increase in Streptococcus mitis abundance relative to NFE group. Bubble plot analysis revealed a significant increase in Moraxella, Fusobacterium, Haemophilus, Pseudomonas, Streptomyces, and Klebsiella in PFT II group, including a notable increase in typical Veillonella, Actinomyces, and Gordonia. The NFE group exhibited a significant increase in Bacteroides and Prevotella's relative abundance. Spearman correlation analysis revealed strong positive correlations among certain microbial communities. There exists a significant variation in microbial composition across groups of AECOPD patients at different lung function. Specifically, patients with severe airflow limitations exhibit a significant reduction in microbial diversity. Additionally, distinct bacterial taxa are enriched in patients characterized by varying levels of airflow limitation and exacerbation frequency. These observations offer vital insights into the pathogenesis of AECOPD, suggesting a potentially crucial role for the microbiota in its development. Such findings pave the way for identifying potential therapeutic targets and intervention strategies, ultimately aiming to improve treatment outcomes for AECOPD patients.
Collapse
Affiliation(s)
- Kawsar Bahetjan
- Respiratory and Respiratory Critical Care Center, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yu-Xia
- Second Ward, Respiratory and Respiratory Critical Care Center, First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011, China.
| | - Shijun Lin
- Respiratory and Respiratory Critical Care Center, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Nuerziba Aili
- Second Ward, Respiratory and Respiratory Critical Care Center, First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011, China
| | - Haiyan Yang
- Second Ward, Respiratory and Respiratory Critical Care Center, First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011, China
| | - Shijun Du
- Second Ward, Respiratory and Respiratory Critical Care Center, First Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011, China
| |
Collapse
|
2
|
Cornu Hewitt B, Bossers A, van Kersen W, de Rooij MMT, Smit LAM. Associations between acquired antimicrobial resistance genes in the upper respiratory tract and livestock farm exposures: a case-control study in COPD and non-COPD individuals. J Antimicrob Chemother 2024; 79:3160-3168. [PMID: 39315772 PMCID: PMC11638102 DOI: 10.1093/jac/dkae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Livestock-related emissions have been associated with aggravations of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD), potentially by altering the respiratory resistome. OBJECTIVES This study investigates the structure of the acquired oropharyngeal (OP) resistome of patients with COPD and controls, its interplay with the respiratory microbiome and associations with residential livestock exposure. METHODS In a matched case-control study in the rural Netherlands, we analysed OP swabs from 35 patients with COPD and 34 controls, none of whom had used antibiotics in the preceding 4 weeks. Resistome profiling was performed using ResCap, complemented by prior characterization of the microbiome via 16S rRNA-based sequencing. Residential livestock farm exposure was defined using distance-based variables alongside modelled concentrations of livestock-emitted microbial pollutants. We compared resistome profiles between patients with COPD and controls, examining alpha and beta diversity as well as differential abundance. Additionally, we assessed the interplay between the resistome and microbiome using co-occurrence networks and Procrustes analysis. Variations in resistome profiles were also analysed based on residential livestock exposures. RESULTS Patients with COPD exhibited higher resistome diversity than controls (Shannon diversity, P = 0.047), though resistome composition remained similar between groups (PERMANOVA, P = 0.19). Significant correlations were observed between the OP resistome and microbiome compositions, with distinct patterns in co-occurrence networks. Residential exposure to livestock farms was not associated with resistome alterations. CONCLUSIONS Our findings reveal the COPD airway as a hospitable environment for antimicrobial resistance genes, irrespective of recent antimicrobial usage. Demonstrating the interplay between the resistome and microbiome, our study underscores the importance of a deeper understanding of the resistome in respiratory health.
Collapse
Affiliation(s)
- Beatrice Cornu Hewitt
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Warner van Kersen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| |
Collapse
|
3
|
Liu F, Zeng M, Zhou X, Huang F, Song Z. Aspergillus fumigatus escape mechanisms from its harsh survival environments. Appl Microbiol Biotechnol 2024; 108:53. [PMID: 38175242 DOI: 10.1007/s00253-023-12952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.
Collapse
Affiliation(s)
- Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
4
|
Shi Y, Yang J, Tian T, Li S, Xie Y. Exploring the potential role of microbiota and metabolites in acute exacerbation of chronic obstructive pulmonary disease. Front Microbiol 2024; 15:1487393. [PMID: 39483760 PMCID: PMC11526122 DOI: 10.3389/fmicb.2024.1487393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
The acute exacerbation of chronic obstructive pulmonary disease seriously affects the respiratory system function and quality of life of patients. This study employed 16S rRNA sequencing and metabolomics techniques to analyze the respiratory microbiota and serum metabolites of COPD and AECOPD patients. The results showed that the microbial diversity in the respiratory tract of AECOPD patients was significantly lower than that of COPD patients, and the relative abundance of Bacteroidetes, Prevotella and Neisseria in the respiratory tract of AECOPD patients was significantly lower than that of COPD patients. However, the relative abundance of Haemophilus_D, Veillonella_A and Pseudomonas_E, in AECOPD patients was significantly higher than that of COPD patients, and the ability of respiratory microbiota in AECOPD patients to participate in alanine metabolism was significantly lower than that of COPD patients. Metabolome results further revealed that the serum alanine levels in AECOPD patients were significantly lower than those in COPD patients, and these differential metabolites were mainly involved in linoleic acid metabolism, protein digestion and absorption and regulation of lipolysis in adipocytes. In summary, the structural characteristics of respiratory microbiota in COPD and AECOPD patients are different from those in healthy populations, and their microbiota diversity decreases and microbial community structure and function will also undergo changes when acute exacerbations occur. In addition, the predicted microbial community function and metabolomics results indicate that the onset of AECOPD is mainly related to energy and amino acid metabolism disorders, especially alanine metabolism.
Collapse
Affiliation(s)
- Yanmin Shi
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianya Yang
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Tian
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suyun Li
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Xie
- National Regional Traditional Chinese Medicine (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Construction by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan International Joint Laboratory of Evidence-based Evaluation for Respiratory Diseases, Henan Province Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Wu J, Zhang Y, Duan J, Wei Y, Miao Y. A metagenomic next-generation sequencing (mNGS)-based analysis of bronchoalveolar lavage samples in patients with an acute exacerbation of chronic obstructive pulmonary disease. J Mol Histol 2024; 55:709-719. [PMID: 39060894 DOI: 10.1007/s10735-024-10225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The role of the bronchoalveolar lavage fluid (BALF) microbiome in acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains unclear. The advent of the metagenomic next-generation sequencing (mNGS) has made it possible to reveal the complex microbiome composition of the respiratory tract. This study aimed to explore whether there are differences in the BALF microbiome of AECOPD patients with different lung functions. We enrolled 55 AECOPD patients and divided them into a mild group (n = 31) and a severe group (n = 24) according to their lung function. We collected BALF and submitted it to mNGS and bioinformatics analysis. At the species level, mNGS identified 264 bacteria, 13 fungi and 12 viruses in the mild group, and 174 bacteria, 6 fungi and 6 viruses in the severe group. Mixed bacterial and viral infection occurred in both groups. At the genus level, Rothia and Veillonella were more abundant in the mild group, while Pseudomonas and Staphylococcus were more abundant in the severe group. At the species level, compared with the mild group, the relative abundance of Haemophilus influenzae and Pseudomonas aeruginosa was increased in the severe group. Besides, the BALF microbiome composition was similar between the two groups, and there was no significant difference in α and β diversity. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) (%) showed no significant correlation with the Shannon or Simpson index. The microbiome abundance was different between the mild and severe groups; however, microbiome diversity was similar between the two groups. Based on our findings, Haemophilus influenzae and Pseudomonas aeruginosa may be the pathogenic bacteria that cause the difference in lung function in patients with AECOPD.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, NO.256, Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Yongqing Zhang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, NO.256, Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Jinjin Duan
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, NO.256, Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Yiqun Wei
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, NO.256, Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, NO.256, Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
6
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
7
|
Qian Y, Cai C, Sun M, Lv D, Zhao Y. Analyses of Factors Associated with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2023; 18:2707-2723. [PMID: 38034468 PMCID: PMC10683659 DOI: 10.2147/copd.s433183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is the exacerbation of a range of respiratory symptoms during the stable phase of chronic obstructive pulmonary disease (COPD). AECOPD is thus a dangerous stage and key event in the course of COPD, as its deterioration and frequency seriously affects the quality of life of patients and shortens their survival. Acute exacerbations occur and develop due to many factors such as infection, tobacco smoke inhalation, air pollution, comorbidities, airflow limitation, various biomarkers, history of previous deterioration, natural killer cell abnormalities, immunoglobulin G deficiency, genetics, abnormal muscle and nutritional status, negative psychology, and seasonal temperature changes. There is relatively limited research on the impact of the role of standardized management on the alleviation of AECOPD. However, with the establishment of relevant prevention and management systems and the promotion of artificial intelligence technology and Internet medical approaches, long-term effective and standardized management of COPD patients may help to achieve the quality of life and disease prognosis in COPD patients and reduce the risk of AE.
Collapse
Affiliation(s)
- Yang Qian
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Chenting Cai
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Mengqing Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Dan Lv
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Yun Zhao
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
8
|
Warnecke JM, Lasenby J, Deserno TM. Robust in-vehicle respiratory rate detection using multimodal signal fusion. Sci Rep 2023; 13:20435. [PMID: 37993552 PMCID: PMC10665475 DOI: 10.1038/s41598-023-47504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Continuous health monitoring in private spaces such as the car is not yet fully exploited to detect diseases in an early stage. Therefore, we develop a redundant health monitoring sensor system and signal fusion approaches to determine the respiratory rate during driving. To recognise the breathing movements, we use a piezoelectric sensor, two accelerometers attached to the seat and the seat belt, and a camera behind the windscreen. We record data from 15 subjects during three driving scenarios (15 min each) city, highway, and countryside. An additional chest belt provides the ground truth. We compare the four convolutional neural network (CNN)-based fusion approaches: early, sensor-based late, signal-based late, and hybrid fusion. We evaluate the performance of fusing for all four signals to determine the portion of driving time and the signal combination. The hybrid algorithm fusing all four signals is most effective in detecting respiratory rates in the city ([Formula: see text]), highway ([Formula: see text]), and countryside ([Formula: see text]). In summary, 60% of the total driving time can be used to measure the respiratory rate. The number of signals used in the multi-signal fusion improves reliability and enables continuous health monitoring in a driving vehicle.
Collapse
Affiliation(s)
- Joana M Warnecke
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106, Braunschweig, Germany.
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
| | - Joan Lasenby
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Thomas M Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106, Braunschweig, Germany
| |
Collapse
|
9
|
Xu W, Li F, Zhu L, Cheng M, Cheng Y. Pacenta polypeptide injection alleviates the fibrosis and inflammation in cigarette smoke extracts-induced BEAS-2B cells by modulating MMP-9/TIMP-1 signaling. J Biochem Mol Toxicol 2023; 37:e23453. [PMID: 37437075 DOI: 10.1002/jbt.23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality. Here, we aimed to explore the roles and potential correlation of placenta polypeptide injection (PPI) and MMP-9/TIMP-1 signaling pathway in COPD. BEAS-2B cells were treated with cigarette smoke extract (CSE) to establish a COPD cell model in vitro. The cell survival and cytotoxic effect were measured by CCK-8, LDH release and flow cytometry assays. The inflammatory responses were determined by western blot and ELISA assay. Cell fibrosis was assessed by immunofluorescence and western blot assays. PPI treatment had no cytotoxic effect on BEAS-2B cells until the final concentration reached to 10%. In the range of 0%-8% final concentration, PPI treatment weakened CSE-induced the decrease of cell viability and the increase of LDH level in a concentration-dependent manner. Four percent PPI treatment enhanced cell viability and decreased cell apoptosis of CSE-treated cells in a time-dependent manner. Moreover, 4% PPI treatment significantly decreased inflammatory responses and fibrosis induced by CSE, while AMPA (MMPs agonist) had opposite effects. Notably, AMPA reversed the protective roles of PPI on CSE-induced inflammation and fibrosis. Mechanistically, 4% PPI treatment significantly suppressed MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, and MMP-19 levels, but enhanced TIMP-1, TIMP-2, TIMP-3, and TIMP-4 levels. Among them, MMP-9 and TIMP-1 might be the main target of PPI. PPI effectively attenuated CSE-induced inflammation and fibrosis in vitro by regulating MMP-9/TIMP-1 signaling pathway.
Collapse
Affiliation(s)
- Wei Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, PR China
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Fuqiang Li
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Lihong Zhu
- Department of General Practice, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Mingliang Cheng
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Yiju Cheng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, PR China
- Suzhou Medical College of Soochow University & The First People's Hospital of Guiyang, Guiyang, Guizhou Province, PR China
| |
Collapse
|
10
|
Angstmann H, Pfeiffer S, Kublik S, Ehrhardt B, Uliczka K, Rabe KF, Roeder T, Wagner C, Schloter M, Krauss-Etschmann S. The microbial composition of larval airways from Drosophila melanogaster differ between specimens from laboratory and natural habitats. ENVIRONMENTAL MICROBIOME 2023; 18:55. [PMID: 37370177 DOI: 10.1186/s40793-023-00506-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.
Collapse
Affiliation(s)
- Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Stefan Pfeiffer
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Birte Ehrhardt
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, Lungen Clinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Germany Member of the German Center for Lung Research, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Christina Wagner
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Michael Schloter
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany.
- Department of Medicine, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany.
| |
Collapse
|
11
|
Salama KSM, Moazen EM, Elsawy SB, Kotb SF, Mohammed EM, Tahoun SA, Ramadan MAA, Abd Elhamid SM, Bahi RHM, Mohammad EA. Bacterial Species and Inflammatory Cell Variability in Respiratory Tracts of Patients with Chronic Obstructive Pulmonary Disease Exacerbation: A Multicentric Study. Infect Drug Resist 2023; 16:2107-2115. [PMID: 37070124 PMCID: PMC10105586 DOI: 10.2147/idr.s402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023] Open
Abstract
Background and Aim Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has profound effects on disease progression and patients' quality of life. Emerging evidence suggests an association between alterations in the respiratory microbiome flora species and airway inflammation in patients with AECOPD. The present study aimed to describe the inflammatory cells and bacterial microbiome distributions in respiratory tract in Egyptian patients with AECOPD. Subjects and Methods The present cross-sectional study included 208 patients with AECOPD. Sputum and broncho-alveolar lavage samples from the studied patients were submitted to microbial cultures using appropriate media. Total and differential leukocytic counts and were done via automated cell counter. Results The present study included 208 AECOPD patients. They comprised 167 males (80.3%) and 41 females (19.7%) with an age of 57.9 ± 4.9 years. AECOPD was categorized as mild, moderate and severe in 30.8%, 43.3% and 26%, respectively. Sputum samples had significantly higher TLC, neutrophil percent and eosinophil percent when compared with BAL samples. In contrast, lymphocyte percent was significantly higher in BAL samples. Sputum specimens had significantly lower frequency of positive growths (70.2% versus 86.5%, p = 0.001). Among the identified organisms, sputum specimens had significantly lower frequency of Strept. pneumoniae (14.4% versus 30.3%, p = 0.001), Klebsiella pneumoniae (19.7% versus 31.7%, p = 0.024), Haemophilus influenzae (12.5% versus 26.9%, p = 0.011), Pseudomonas aeruginosa (2.9% versus 10%, p = 0.019) and Acinetobacter spp. (1.9% versus 7.2%, p = 0.012) growths when compared with BAL samples. Conclusion The present study could identify a distinctive pattern of inflammatory cell distribution in sputum and BAL samples of AECOPD patients. The most commonly isolated organisms were Klebsiella pneumoniae and Strept. pneumoniae.
Collapse
Affiliation(s)
- Khadiga S M Salama
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman M Moazen
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sawsan B Elsawy
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
- Correspondence: Sawsan B Elsawy, Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt, Email
| | - Sanaa F Kotb
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eid M Mohammed
- Chest Diseases Department Faculty of Medicine for Men’s, Al-Azhar University, Cairo, Egypt
| | - Sara A Tahoun
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Marwa A A Ramadan
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samar M Abd Elhamid
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rania H M Bahi
- Chest Diseases Department Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Etemad A Mohammad
- Chest Diseases Department Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Russo C, Colaianni V, Ielo G, Valle MS, Spicuzza L, Malaguarnera L. Impact of Lung Microbiota on COPD. Biomedicines 2022; 10:biomedicines10061337. [PMID: 35740358 PMCID: PMC9219765 DOI: 10.3390/biomedicines10061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
There is a fine balance in maintaining healthy microbiota composition, and its alterations due to genetic, lifestyle, and environmental factors can lead to the onset of respiratory dysfunctions such as chronic obstructive pulmonary disease (COPD). The relationship between lung microbiota and COPD is currently under study. Little is known about the role of the microbiota in patients with stable or exacerbated COPD. Inflammation in COPD disorders appears to be characterised by dysbiosis, reduced lung activity, and an imbalance between the innate and adaptive immune systems. Lung microbiota intervention could ameliorate these disorders. The microbiota’s anti-inflammatory action could be decisive in the onset of pathologies. In this review, we highlight the feedback loop between microbiota dysfunction, immune response, inflammation, and lung damage in relation to COPD status in order to encourage the development of innovative therapeutic goals for the prevention and management of this disease.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Valeria Colaianni
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Giuseppe Ielo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence: (M.S.V.); (L.M.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
- Correspondence: (M.S.V.); (L.M.)
| |
Collapse
|
13
|
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe respiratory system holds crucial importance in the biology of vertebrate animals. Injuries of the respiratory system caused by viral infections (e.g., by COVID‐19, MERS, and SARS) can lead to severe or lethal conditions. So far there are no effective treatments for respiratory injuries. This represents a highly unmet clinical need, e.g., during the current COVID‐19 pandemic. Nanomedicines have high potential in the treatment of respiratory injuries. In this review, the pathology and clinical treatments of major respiratory injuries, acute lung injury, and acute respiratory distress syndrome are briefly summarized. The review primarily focuses on nanomedicines based on liposomes, solid lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, which are tested in preclinical models for the treatment of respiratory injuries. These nanomedicines are utilized to deliver a variety of therapeutic agents, including corticosteroids, statins, and nucleic acids. Furthermore, nanomedicines are also investigated for other respiratory diseases including chronic obstructive pulmonary disease and asthma. The promising preclinical results of various nanoformulations from these studies suggest the potential of nanomedicines for future clinical management of respiratory viral infections and diseases.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Mengmeng Long
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| | - Leilei Gao
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yang Shi
- Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University 52074 Aachen Germany
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| |
Collapse
|
14
|
Wang Y, Chen Y, Wu C, Yang X. Informatic analysis of the pulmonary microecology in non-cystic fibrosis bronchiectasis at three different stages. Open Life Sci 2022; 17:107-120. [PMID: 35291562 PMCID: PMC8886608 DOI: 10.1515/biol-2022-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
This study explored the impact of pulmonary microecological changes on disease progression in non-cystic fibrosis bronchiectasis (nCFB). A careful search of the NCBI BioProject database revealed the 16S rRNA-based microbiological testing results of 441 pulmonary sputum samples from patients in the relatively stable (baseline), acute exacerbation, or recovery stage. After preliminary analysis and screening, we selected 152 samples for further analyses, including determination of the operational taxonomic unit (OTU) distribution at the phylum, class, order, family and genus levels, community structure, alpha diversity, beta diversity, microbial multivariables, correlations, and community structure after the abundances of intragroup samples were averaged. The recovery group showed significant differences in pulmonary microbiological changes (P < 0.05) compared with the other groups. There were 30 differentially abundant OTUs, with 27 and 7 at the genus and phylum levels, respectively. The Chao1 value of the recovery group was comparable to that of the baseline group, and the Shannon and Simpson values of the recovery group were the highest. Rhodococcus in Actinobacteria was positively correlated with Ochrobactrum in Firmicutes. The differences in pulmonary microecological changes at different nCFB stages may serve as a biologically predictive indicator of nCFB progression.
Collapse
Affiliation(s)
- Yuchao Wang
- Graduate School, Xinjiang Medical University , 830001 Urumqi , China
| | - Ying Chen
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| |
Collapse
|
15
|
Li W, Wang B, Tan M, Song X, Xie S, Wang C. Analysis of sputum microbial metagenome in COPD based on exacerbation frequency and lung function: a case control study. Respir Res 2022; 23:321. [PMCID: PMC9675190 DOI: 10.1186/s12931-022-02246-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background The role of the sputum microbiome in chronic obstructive pulmonary disease (COPD) progression remains elusive. As the advent of the new culture-independent microbial sequencing technique makes it possible to disclose the complex microbiome community of the respiratory tract. The aim of this study was to use metagenomic next-generation sequencing (mNGS) to confirm whether there are differences in sputum microbiome of COPD between different exacerbation frequencies and lung function. Methods Thirty-nine COPD patients were divided into a frequent exacerbators (FE) group (n = 20) and a non-frequent exacerbators (NFE) (n = 19) group according to their exacerbation history, or a mild group (FEV1/pre ≥ 50%, n = 20) and a severe group (FEV1/pre < 50%, n = 19) according to the lung function. Sputum was collected during their stable phase, followed by DNA extraction, untargeted metagenomic next-generation sequencing (mNGS) and bioinformatic analysis. Results mNGS identified 3355 bacteria, 71 viruses and 22 fungi at the specie level. It was found that Shannon index and Simpson index in FE group was lower than that in NFE group (p = 0.005, 0.008, respectively) but similar between mild and severe groups. Out of top 10 bacteria taxa, Veillonella, Fusobacterium and Prevotella jejuni had a higher abundance in NFE group, Rothia had a higher abundance in mild group. Linear discriminant analysis revealed that many bacterial taxa were more abundant in NFE group, and they mostly belonged to Actinobacteria, Bacteroidetes and Fusobacteria phyla. Frequency of exacerbations was also found to be negatively correlated with alpha diversity (with Shannon index, r = − 0.423, p = 0.009; with Simpson index, r = − 0.482, p = 0.002). No significant correlation was observed between alpha diversity and FEV1/pre. Conclusions Microbiome diversity in FE group was lower than that in NFE group. There was a significant difference in microbiome taxa abundance between FE and NFE groups, or mild and severe groups. These findings demonstrated that sputum microbiome community dysbiosis was associated with different exacerbation frequencies and lung function in stable COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02246-9.
Collapse
Affiliation(s)
- Wei Li
- grid.24516.340000000123704535Department of Geriatrics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Bingbing Wang
- grid.24516.340000000123704535Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Min Tan
- grid.24516.340000000123704535Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Xiaolian Song
- grid.24516.340000000123704535Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Shuanshuan Xie
- grid.24516.340000000123704535Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Changhui Wang
- grid.24516.340000000123704535Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| |
Collapse
|
16
|
Ruan R, Deng X, Dong X, Wang Q, Lv X, Si C. Microbiota Emergencies in the Diagnosis of Lung Diseases: A Meta-Analysis. Front Cell Infect Microbiol 2021; 11:709634. [PMID: 34621687 PMCID: PMC8490768 DOI: 10.3389/fcimb.2021.709634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Although many studies have reported that microbiota emergencies are deeply involved in the occurrence and subsequent progression of lung diseases, the present diagnosis of lung disease depends on microbiota markers, which is still poorly understood. Therefore, a meta-analysis was performed to confirm lung microbiota markers for the diagnosis of lung diseases. Literature databases were searched following the inclusion and exclusion criteria. There are 6 studies including 1347 patients and 26 comparisons to be enrolled, and then the diagnostic effect was evaluated using Stata 14.0 and Meta-disc 1.4 software. The pooled sensitivity (SEN), specificity (SPE), diagnostic likelihood ratio positive (DLR+), diagnostic likelihood ratio negative (DLR-), and diagnostic OR (DOR), as well as area under the curve (AUC) of microbiota markers in the diagnosis of lung diseases were 0.90 (95% CI: 0.83-0.94), 0.89 (95% CI: 0.76-0.95), 7.86 (95% CI: 3.39-18.21), 0.12 (95% CI: 0.06-0.21), 22.254 (95% CI: 12.83-39.59.14), and 0.95 (95% CI: 0.93-0.97), respectively. Subgroup analysis revealed that research based on Caucasian, adult, BAL fluid, PCR, pneumonia obtained higher AUC values. The microbiota markers have shown potential diagnosis value for lung diseases. But further large-scale clinical studies are still needed to verify and replicate the diagnostic value of lung microbiota markers.
Collapse
Affiliation(s)
- Renyu Ruan
- College of Undergradute, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Xiangmin Deng
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Qi Wang
- College of Pharmacy, Harbin Medical University-Daqing, Da Qing, China
| | - Xiaoling Lv
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
17
|
Deng L, Yan J, Xu H, Huang C, Lv Y, Wu Q, Xu Y, Chen X. Prediction of exacerbation frequency of AECOPD based on next-generation sequencing and its relationship with imbalance of lung and gut microbiota: a protocol of a prospective cohort study. BMJ Open 2021; 11:e047202. [PMID: 34475159 PMCID: PMC8413946 DOI: 10.1136/bmjopen-2020-047202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Patients with frequent acute exacerbation phenotype chronic obstructive pulmonary disease (AECOPD) have a higher hospitalisation rate than infrequent exacerbation, the disease progresses quickly and treatment is more difficult. At present, it is impossible to predict patients with COPD with frequent acute exacerbation phenotypes. The composition of the lower respiratory tract flora and the intestinal flora is closely related to AECOPD, but the specific association mechanism between them is not very clear. This study used metagenomic next-generation sequencing (mNGS) technology to explore the microbial characteristics of the intestinal tract and airways of patients with COPD, and analyse the correlation between the sequencing results and inflammatory factors, immune factors and nutritional factors. METHODS AND ANALYSIS This will be a prospective cohort study. We intend to recruit 152 patients with stable COPD. In the baseline, we will detect the participants' induced sputum and faecal flora through mNGS, and changes in blood immune levels, and the patient's condition is evaluated. Every 2 months, we will check the number of acute exacerbation through the phone range. After 12 months, we will check again the changes in the blood immune level, evaluate the patient's condition and count the number of episodes. ETHICS AND DISSEMINATION This study has been approved by the ethics committee of Guangdong Provincial Hospital of Traditional Chinese Medicine (approval number ZF2019-219-03). The results of the study will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (ChiCTR2000032870).
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiali Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunzhen Huang
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qianxin Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinji Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
19
|
Waeijen-Smit K, Houben-Wilke S, DiGiandomenico A, Gehrmann U, Franssen FME. Unmet needs in the management of exacerbations of chronic obstructive pulmonary disease. Intern Emerg Med 2021; 16:559-569. [PMID: 33616876 PMCID: PMC7897880 DOI: 10.1007/s11739-020-02612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) are episodes of acute worsening of respiratory symptoms that require additional therapy. These events play a pivotal role in the natural course of the disease and are associated with a progressive decline in lung function, reduced health status, a low physical activity level, tremendous health care costs, and increased mortality. Although most exacerbations have an infectious origin, the underlying mechanisms are heterogeneous and specific predictors of their occurrence in individual patients are currently unknown. Accurate prediction and early diagnosis of exacerbations is essential to develop novel targets for prevention and personalized treatments to reduce the impact of these events. Several potential biomarkers have previously been studied, these however lack specificity, accuracy and do not add value to the available clinical predictors. At present, microbial composition and host-microbiome interactions in the lung are increasingly recognized for their role in affecting the susceptibility to exacerbations, and may steer towards a novel direction in the management of COPD exacerbations. This narrative review describes the current challenges and unmet needs in the management of acute exacerbations of COPD. Exacerbation triggers, biological clusters, current treatment strategies, and their limitations, previously studied biomarkers and prediction tools, the lung microbiome and its role in COPD exacerbations as well as future directions are discussed.
Collapse
Affiliation(s)
- Kiki Waeijen-Smit
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Sarah Houben-Wilke
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frits M E Franssen
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|