1
|
Allegretto JA, Dostalek J. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401437. [PMID: 38868917 PMCID: PMC11321619 DOI: 10.1002/advs.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Volatile Organic Compounds (VOC) are a major class of environmental pollutants hazardous to human health, but also highly relevant in other fields including early disease diagnostics and organoleptic perception of aliments. Therefore, accurate analysis of VOC is essential, and a need for new analytical methods is witnessed for rapid on-site detection without complex sample preparation. Surface-Enhanced Raman Spectroscopy (SERS) offers a rapidly developing versatile analytical platform for the portable detection of chemical species. Nonetheless, the need for efficient docking of target analytes at the metallic surface significantly narrows the applicability of SERS. This limitation can be circumvented by interfacing the sensor surface with Metal-Organic Frameworks (MOF). These materials featuring chemical and structural versatility can efficiently pre-concentrate low molecular weight species such as VOC through their ordered porous structure. This review presents recent trends in the development of MOF-based SERS substrates with a focus on elucidating respective design rules for maximizing analytical performance. An overview of the status of the detection of harmful VOC is discussed in the context of industrial and environmental monitoring. In addition, a survey of the analysis of VOC biomarkers for medical diagnosis and emerging applications in aroma and flavor profiling is included.
Collapse
Affiliation(s)
- Juan A. Allegretto
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
| | - Jakub Dostalek
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
- FZU‐Institute of PhysicsCzech Academy of SciencesNa Slovance 2Prague82021Czech Republic
| |
Collapse
|
2
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Lebrón JA, Ostos FJ, Martínez-Santa M, García-Moscoso F, López-López M, Moyá ML, Bernal E, Bachiller S, González-Ulloa G, Rodríguez-Lucena D, Lopes-Costa T, Fernández-Torres R, Ruiz-Mateos E, Pedrosa JM, Rafii-El-Idrissi Benhnia M, López-Cornejo P. Biocompatible metal-organic frameworks as promising platforms to eradicate HIV reservoirs ex vivo in people living with HIV. J Mater Chem B 2024; 12:5220-5237. [PMID: 38695162 DOI: 10.1039/d4tb00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The HIV attacks the immune system provoking an infection that is considered a global health challenge. Despite antiretroviral treatments being effective in reducing the plasma viral load in the blood to undetectable levels in people living with HIV (PLWH), the disease is not cured and has become chronic. This happens because of the existence of anatomical and cellular viral reservoirs, mainly located in the lymph nodes and gastrointestinal tract, which are composed of infected CD4+ T cells with a resting memory phenotype and inaccessible to antiretroviral therapy. Herein, a new therapeutic strategy based on nanotechnology is presented. Different combinations of antiretroviral drugs (bictegravir/tenofovir/emtricitabine and nevirapine/tenofovir/emtricitabine) and toll-like receptor agonists were encapsulated into metal-organic frameworks (MOFs) PCN-224 and ZIF-8. The encapsulation efficiencies of all the drugs, as well as their release rate from the carriers, were measured. In vitro studies about the cell viability, the hemocompatibility, and the platelet aggregation of the MOFs were carried out. Epifluorescence microscopy assays confirmed the ability of ZIF-8 to target a carboxyfluorescein probe inside HeLa cell lines and PBMCs. These results pave the way for the use of these structures to eliminate latent HIV reservoirs from anatomical compartments through the activation of innate immune cells, and a higher efficacy of the triplet combinations of antiretroviral drugs.
Collapse
Affiliation(s)
- José A Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco J Ostos
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Marta Martínez-Santa
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco García-Moscoso
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus 'El Carmen', Faculty of Experimental Sciences, University of Huelva, 21071, Huelva, Spain
| | - María L Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Eva Bernal
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Sara Bachiller
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Gabriel González-Ulloa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - David Rodríguez-Lucena
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Tania Lopes-Costa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González, 1, 41012, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - José M Pedrosa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| |
Collapse
|
4
|
Fawzy EM, Selim MA, Mostafa NE, Abdelhameed RM, Darwish AM, Yousef AM, Alabiad MA, Ibrahim MN, Fawzy HM, Abdel Hamed EF. The prophylactic and therapeutic impact of Trichinella spiralis larvae excretory secretory antigens- loaded Ca-BTC metal organic frameworks on induced murine colitis. J Helminthol 2024; 98:e41. [PMID: 38785193 DOI: 10.1017/s0022149x24000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Background: Inflammatory bowel disease is an autoimmune disease that affects the gut. T. spiralis larvae (E/S Ags) loaded on calcium-benzene-1,3,5-tricarboxylate metal-organic frameworks (Ca-BTC MOFs) were tested to determine whether they might prevent or cure acetic acid-induced murine colitis. Methods: T. spiralis larvae E/S Ags/Ca-BTC MOFs were used in prophylactic and therapeutic groups to either precede or follow the development of murine colitis. On the seventh day after colitis, mice were slaughtered. The effect of our target antigens on the progress of the colitis was evaluated using a variety of measures, including survival rate, disease activity index, colon weight/bodyweight, colon weight/length) ratios, and ratings for macroscopic and microscopic colon damage. The levels of inflammatory cytokines (interferon-γ and interleukin-4), oxidative stress marker malondialdehyde, and glutathione peroxidase in serum samples were evaluated. Foxp3 T-reg expression was carried out in colonic and splenic tissues. Results: T. spiralis larvae E/S Ags/Ca-BTC MOFs were the most effective in alleviating severe inflammation in murine colitis. The survival rate, disease activity index score, colon weight/length and colon weight/bodyweight ratios, and gross and microscopic colon damage scores have all considerably improved. A large decrease in proinflammatory cytokine (interferon-γ) and oxidative stress marker (malondialdehyde) expression and a significant increase in interleukin-4 and glutathione peroxidase expression were obtained. The expression of Foxp3+ Treg cells was elevated in colonic and splenic tissues. Conclusion: T. spiralis larvae E/S Ags/Ca-BTC MOFs had the highest anti-inflammatory, antioxidant, and cytoprotective capabilities against murine colitis and might be used to develop new preventative and treatment strategies.
Collapse
Affiliation(s)
- E M Fawzy
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Selim
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - N E Mostafa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - R M Abdelhameed
- Department of Applied Organic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - A M Darwish
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - A M Yousef
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt
| | - M N Ibrahim
- Department of Clinical Laboratories, College of applied Medical Sciences, Jouf University, Qurrayat77451, KSA
| | - H M Fawzy
- Department of Community, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - E F Abdel Hamed
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
5
|
Paknia F, Roostaee M, Isaei E, Mashhoori MS, Sargazi G, Barani M, Amirbeigi A. Role of Metal-Organic Frameworks (MOFs) in treating and diagnosing microbial infections. Int J Biol Macromol 2024; 262:130021. [PMID: 38331063 DOI: 10.1016/j.ijbiomac.2024.130021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.
Collapse
Affiliation(s)
- Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Elham Isaei
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| | - Mahboobeh-Sadat Mashhoori
- Department of Chemistry, Faculty of Science, University of Birjand, P.O.Box 97175-615, Birjand, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran; Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
7
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
8
|
Sabzehmeidani MM, Kazemzad M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: a review. Biomater Res 2023; 27:115. [PMID: 37950330 PMCID: PMC10638836 DOI: 10.1186/s40824-023-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Coatings of metal-organic frameworks (MOFs) have potential applications in surface modification for medical implants, tissue engineering, and drug delivery systems. Therefore, developing an applicable method for surface-mounted MOF engineering to fabricate protective coating for implant tissue engineering is a crucial issue. Besides, the coating process was desgined for drug infusion and effect opposing chemical and mechanical resistance. In the present review, we discuss the techniques of MOF coatings for medical application in both in vitro and in vivo in various systems such as in situ growth of MOFs, dip coating of MOFs, spin coating of MOFs, Layer-by-layer methods, spray coating of MOFs, gas phase deposition of MOFs, electrochemical deposition of MOFs. The current study investigates the modification in the implant surface to change the properties of the alloy surface by MOF to improve properties such as reduction of the biofilm adhesion, prevention of infection, improvement of drugs and ions rate release, and corrosion resistance. MOF coatings on the surface of alloys can be considered as an opportunity or a restriction. The presence of MOF coatings in the outer layer of alloys would significantly demonstrate the biological, chemical and mechanical effects. Additionally, the impact of MOF properties and specific interactions with the surface of alloys on the anti-microbial resistance, anti-corrosion, and self-healing of MOF coatings are reported. Thus, the importance of multifunctional methods to improve the adhesion of alloy surfaces, microbial and corrosion resistance and prospects are summarized.
Collapse
Affiliation(s)
- Mohammad Mehdi Sabzehmeidani
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
9
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
10
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
11
|
El Naggar HM, Anwar MM, Khayyal AE, Abdelhameed RM, Barakat AM, Sadek SAS, Elashkar AM. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: parasitological, histopathological, and immunohistochemical studies. J Parasit Dis 2023; 47:591-607. [PMID: 37520202 PMCID: PMC10382463 DOI: 10.1007/s12639-023-01602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular protozoon which may cause severe disease in the immunocompromised patients. Unfortunately, the majority of treatments on the market work against tachyzoites in the acute infection but can't affect tissue cysts in the chronic phase. So, this study aimed to evaluate the effect of bee venom (BV) loaded metal organic frameworks (MOFs) nanoparticles (NPs) for the treatment of chronic murine toxoplasmosis. Ninety laboratory Swiss Albino mice were divided into 9 groups (10 mice each); GI (negative control), GII (infected control), GIII-GXI (infected with Me49 strain of Toxoplasma and treated); GIII (MOFs-NPs), GIV and GV (BV alone and loaded on MOFs-NPs), GVI and GVII (spiramycin alone and loaded on MOFs-NPs), GVIII and GIX (ciprofloxacin alone and loaded on MOFs-NPs). Parasitological examination of brain cyst count, histopathological study of brain, retina, liver, and kidney tissue sections and immunohistochemical (IHC) evaluation of liver was performed. Counting of Toxoplasma brain cysts showed high statistically significant difference between the infected treated groups and GII. GV showed the least count of brain cysts; mean ± SD (281 ± 29.5). Histopathological examination revealed a marked ameliorative effect of BV administration when used alone or loaded MOFs-NPs. It significantly reduced tissue inflammation, degeneration, and fibrosis. IHC examination of liver sections revealed high density CD8+ infiltration in GII, low density CD8+ infiltration in GIII, GVI, GVII, GVIII, and GIX while GIV and GV showed intermediate density CD8+ infiltration. BV is a promising Apitherapy against chronic toxoplasmosis. This effect is markedly enhanced by MOFs-NPs. Graphical abstract
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Anwar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira E. Khayyal
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| | - Ashraf M. Barakat
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Ayman M. Elashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, KSA Saudi Arabia
| |
Collapse
|
12
|
Niu B, Liu M, Li X, Guo H, Chen Z. Vein-Like Ni-BTC@Ni 3S 4 with Sulfur Vacancy and Ni 3+ Fabricated In Situ Etching Vulcanization Strategy for an Electrochemical Sensor of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13319-13331. [PMID: 36862601 DOI: 10.1021/acsami.2c22586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a novel Ni-BTC@Ni3S4 composite was fabricated by solvothermal reaction using an in situ etching vulcanization strategy and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Brunauer-Emmett-Teller (BET) analyses. The existence of a sulfur vacancy and Ni3+ in the as-prepared vein-like Ni-BTC@Ni3S4 greatly promoted the electrochemical sensing activity of the materials. Herein, a simple electrochemical sensor (Ni-BTC@Ni3S4/CPE) has been fabricated and used for the detection of dopamine (DA). The current signal of the Ni-BTC@Ni3S4/CPE-modified electrode was linear with the concentration of DA in the range of 0.05-750 μM (R2 = 0.9995) with a sensitivity of 560.27 μA·mM-1·cm-2 and a detection limit of 0.016 μM. At the same time, the sensor has good stability and anti-interference ability. This study could provide a new idea and strategy for the structural regulation of composite electrode-modified materials and sensitive sensing detection of small biological molecules.
Collapse
Affiliation(s)
- Baitong Niu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Minmin Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xinlou Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Hongxu Guo
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhangxu Chen
- Fujian Provincial University Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian 351100, China
| |
Collapse
|
13
|
Laucirica G, Allegretto JA, Wagner MF, Toimil-Molares ME, Trautmann C, Rafti M, Marmisollé W, Azzaroni O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207339. [PMID: 36239253 DOI: 10.1002/adma.202207339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| |
Collapse
|
14
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
15
|
Electrospun zinc-based metal organic framework loaded-PVA/chitosan/hyaluronic acid interfaces in antimicrobial composite nanofibers scaffold for bone regeneration applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
17
|
Khan FB, Ansari MA, Uddin S, Palakott AR, Anwar I, Almatroudi A, Alomary MN, Alrumaihi F, Aba Alkhayl FF, Alghamdi S, Muhammad K, Huang CY, Daddam JR, Khan H, Maqsood S, Ayoub MA. Prospective Role of Bioactive Molecules and Exosomes in the Therapeutic Potential of Camel Milk against Human Diseases: An Updated Perspective. Life (Basel) 2022; 12:life12070990. [PMID: 35888080 PMCID: PMC9318805 DOI: 10.3390/life12070990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023] Open
Abstract
Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Abdul Rasheed Palakott
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 52571, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Khalid Muhammad
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|