1
|
Shi Q, Penman MG, Carrillo JC, Van Rompay AR, Kamelia L, Rooseboom M, Shen H, Jia S, Tian Y, Dunn J, Hubert F, Boogaard PJ. The subchronic toxicity of higher olefins in Han Wistar rats. BMC Pharmacol Toxicol 2024; 25:62. [PMID: 39243062 PMCID: PMC11380337 DOI: 10.1186/s40360-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Higher olefins (HO) are a category of unsaturated hydrocarbons widely used in industry applications to make products essential for daily human life. Establishing safe exposure limits requires a solid data matrix that facilitates understanding of their toxicological profile. This in turn allows for data to be read across to other members of the category, which are structurally similar and have predictable physico-chemical properties. Five independent subchronic oral toxicity studies were conducted in Wistar rats with Oct-1-ene, Nonene, branched, Octadec-1-ene, Octadecene and hydrocarbon C12-30, olefin-rich, ethylene polymn. by product, at doses ranging from 20 to 1000 mg/kg bw. These HO were selected considering gut absorption, carbon chain length, double-bond position and carbon backbone structural variations. Generally, limited and non-adverse toxicity effects were observed at the end of the treatment for short carbon chain HO. For instance, alpha 2u-globulin nephropathy in the male rats and liver hypertrophy. No clear trend in systemic toxicity was linked to the double-bond position. Key factors for hazard assessment include absorption, carbon chain length, and branching, with Nonene, branched, identified as the worst-case substance. Taken together, the no observed adverse effect level (NOAEL) of each HO in these subchronic studies was set at the highest dose tested.
Collapse
Affiliation(s)
- Quan Shi
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands.
| | - Michael G Penman
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Juan-Carlos Carrillo
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - An R Van Rompay
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Lenny Kamelia
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - Martijn Rooseboom
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - Hua Shen
- Shell Oil Company, 150 N. Dairy Ashford Rd., Houston, TX, 77079, USA
| | - Sophie Jia
- Chevron Phillips Chemical Company, 10001 Six Pines Dr., The Woodlands, TX, 77381, USA
| | - Yuan Tian
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Jamie Dunn
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Fabienne Hubert
- INEOS Oligomers, Hawkslease, Chapel Lane, Lyndhurst, SO43 7FG, UK
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
2
|
Shi Q, Carrillo JC, Penman MG, Shen H, North CM, Jia S, Borsboom-Patel T, Tian Y, Hubert F, Manton JC, Boogaard PJ. Toxicological Assessment of Higher Olefins in OECD TG 422 Repeated Dose and Reproductive /Developmental Toxicity Screening Tests in Han Wistar Rats. Int J Toxicol 2024; 43:301-326. [PMID: 37936376 DOI: 10.1177/10915818231210856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Higher olefins (HO) are used primarily as intermediates in the production of other chemicals, such as polymers, fatty acids, plasticizer alcohols, surfactants, lubricants, amine oxides, and detergent alcohols. The potential toxicity of five HO (i.e., 1-Octene, Nonene, Decene, Hexadecene, and 1-Octadecene) with carbon ranging from C8 to C18 was examined in a combined repeated dose and reproduction/developmental toxicity screening study (OECD TG 422). These five HO were administered to Han Wistar rats by gavage at 0 (controls), 100, 300, and 1000 mg/kg bw/day. As a group of substances, adaptive changes in the liver (liver weight increase without pathological evidence), as well as increased kidney weight in male rats, were observed in HO with carbon numbers from C8 to C10. The overall systemic no observed adverse effect level (NOAEL) for all HO was determined at 1000 mg/kg bw/day. In the reproductive/developmental toxicity assessment, offspring viability, size, and weights were reduced in litters from females treated with Nonene at 1000 mg/kg bw/day. The overall no observed effects level (NOEL) for reproductive toxicity was considered to be 300 mg/kg bw/day for Nonene and 1000 mg/kg bw/day for the other four HO, respectively. These data significantly enrich the database on the toxicity of linear and branched HO, allowing comparison with similar data published on a range of linear and branched HO. Comparisons between structural class and study outcome provide further supportive data in order to validate the read-across hypothesis as part of an overall holistic testing strategy.
Collapse
Affiliation(s)
- Quan Shi
- Shell Product Stewardship, Shell Global Solutions International B.V., The Hague, The Netherlands
| | - Juan-Carlos Carrillo
- Shell Product Stewardship, Shell Global Solutions International B.V., The Hague, The Netherlands
| | | | - Hua Shen
- Shell USA, Inc., Houston, TX, USA
| | - Colin M North
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | - Sophie Jia
- Chevron Phillips Chemical Company, The Woodlands, TX, USA
| | | | - Yuan Tian
- Institute of Ophthalmology, University College London, London, UK
| | | | - Jason C Manton
- Penman Consulting Ltd., Aspect House, Grove Business Park, Grove, Oxfordshire, OX12 9FF, UK
- Exponent International Limited, The Lenz, Hornbeam Park, Harrogate HG2 8RE, United Kingdom
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Barnes DA, Firman JW, Belfield SJ, Cronin MTD, Vinken M, Janssen MJ, Masereeuw R. Development of an adverse outcome pathway network for nephrotoxicity. Arch Toxicol 2024; 98:929-942. [PMID: 38197913 PMCID: PMC10861692 DOI: 10.1007/s00204-023-03637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Adverse outcome pathways (AOPs) were introduced in modern toxicology to provide evidence-based representations of the events and processes involved in the progression of toxicological effects across varying levels of the biological organisation to better facilitate the safety assessment of chemicals. AOPs offer an opportunity to address knowledge gaps and help to identify novel therapeutic targets. They also aid in the selection and development of existing and new in vitro and in silico test methods for hazard identification and risk assessment of chemical compounds. However, many toxicological processes are too intricate to be captured in a single, linear AOP. As a result, AOP networks have been developed to aid in the comprehension and placement of associated events underlying the emergence of related forms of toxicity-where complex exposure scenarios and interactions may influence the ultimate adverse outcome. This study utilised established criteria to develop an AOP network that connects thirteen individual AOPs associated with nephrotoxicity (as sourced from the AOP-Wiki) to identify several key events (KEs) linked to various adverse outcomes, including kidney failure and chronic kidney disease. Analysis of the modelled AOP network and its topological features determined mitochondrial dysfunction, oxidative stress, and tubular necrosis to be the most connected and central KEs. These KEs can provide a logical foundation for guiding the selection and creation of in vitro assays and in silico tools to substitute for animal-based in vivo experiments in the prediction and assessment of chemical-induced nephrotoxicity in human health.
Collapse
Affiliation(s)
- D A Barnes
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - J W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - S J Belfield
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M J Janssen
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - R Masereeuw
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Yang C, Rathman JF, Ribeiro JV, Batke M, Escher SE, Firman JW, Hobocienski B, Kellner R, Mostrag A, Przybylak KR, Cronin MTD. Update of the Cancer Potency Database (CPDB) to enable derivations of Thresholds of Toxicological Concern (TTC) for cancer potency. Food Chem Toxicol 2023; 182:114182. [PMID: 37951343 DOI: 10.1016/j.fct.2023.114182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The purpose of this study was to update the existing Cancer Potency Database (CPDB) in order to support the development of a dataset of compounds, with associated points of departure (PoDs), to enable a review and update of currently applied values for the Threshold of Toxicological Concern (TTC) for cancer endpoints. This update of the current CPDB, last reviewed in 2012, includes the addition of new data (44 compounds and 158 studies leading to additional 359 dose-response curves). Strict inclusion criteria were established and applied to select compounds and studies with relevant cancer potency data. PoDs were calculated from dose-response modeling, including the benchmark dose (BMD) and the lower 90% confidence limits (BMDL) at a specified benchmark response (BMR) of 10%. The updated full CPDB database resulted in a total of 421 chemicals which had dose-response data that could be used to calculate PoDs. This candidate dataset for cancer TTC is provided in a transparent and adaptable format for further analysis of TTC to derive cancer potency thresholds.
Collapse
Affiliation(s)
- Chihae Yang
- Molecular Networks GmbH, Nuremberg, Germany; Altamira LLC, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA
| | - James F Rathman
- Molecular Networks GmbH, Nuremberg, Germany; Altamira LLC, Columbus, OH, USA; The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|