1
|
Nechita MA, Pralea IE, Țigu AB, Iuga CA, Pop CR, Gál E, Vârban R, Nechita VI, Oniga O, Toiu A, Benedec D, Hanganu D, Oniga I. Agastache Species (Lamiaceae) as a Valuable Source of Volatile Compounds: GC-MS Profiling and Investigation of In Vitro Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:5366. [PMID: 38791403 PMCID: PMC11120732 DOI: 10.3390/ijms25105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzău" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzău" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzău" EO (IC50 = 203.70 ± 0.24 μg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 μL/mL) and S. aureus (10.80 ± 0.00 μL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
| | - Adrian-Bogdan Țigu
- Department of Translational Medicine, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Florești Street 64, 400509 Cluj-Napoca, Romania;
| | - Emese Gál
- Department of Chemistry and Chemical Engineering, Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028 Cluj-Napoca, Romania;
| | - Rodica Vârban
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babeș Street 41, 400010 Cluj-Napoca, Romania;
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| |
Collapse
|
2
|
Nechita MA, Toiu A, Benedec D, Hanganu D, Ielciu I, Oniga O, Nechita VI, Oniga I. Agastache Species: A Comprehensive Review on Phytochemical Composition and Therapeutic Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2937. [PMID: 37631149 PMCID: PMC10459224 DOI: 10.3390/plants12162937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
The Agastache genus is part of the Lamiaceae family and is native to North America, while one species, Agastache rugosa (A. rugosa), is native to East Asia. A review on the phytochemistry and bioactivity of Agastache genus was last performed in 2014. Since then, a lot of progress has been made on the characterization of the phytochemical and pharmacological profiles of Agastache species. Thus, the purpose of this paper is to present a summary of the findings on the phytochemistry and biological effects of several Agastache species, including both extracts and essential oil characterization. We performed a comprehensive search using PubMed and Scopus databases, following PRISMA criteria regarding the study selection process. The available data is focused mainly on the description of the chemical composition and bioactivity of A. rugosa, with fewer reports referring to Agastache mexicana (A. mexicana) and Agastache foeniculum (A. foeniculum). Agastache species are characterized by the dominance of flavonoids and phenolic acids, as well as volatile compounds, particularly phenylpropanoids and monoterpenes. Moreover, a series of pharmacological effects, including antioxidant, cytotoxic, antimicrobial, anti-atherosclerotic, and cardioprotective properties, have been reported for species from the Agastache genus.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Yeo HJ, Kwon MJ, Han SY, Jeong JC, Kim CY, Park SU, Park CH. Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040797. [PMID: 36840144 PMCID: PMC9959714 DOI: 10.3390/plants12040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 05/14/2023]
Abstract
Agastache rugosa (popularly known as Korean mint) belongs to the Lamiaceae family and comprises 22 species of perennial aromatic medicinal species native to East Asian countries, such as Korea, Taiwan, Japan, and China. A. rugosa contains many phenolic compounds that exhibit pharmacological and physiological activities, including antioxidant, anticancer, antiviral, antifungal, and antibacterial activities. The highest concentrations of rosmarinic acid and its isomers have been reported in the roots of A. rugosa. In this in vitro study, hairy roots of A. rugosa were obtained and the carbohydrates (sorbitol, mannitol, glucose, maltose, galactose, mannose, and sucrose) were evaluated to determine those that were optimal for rosmarinic acid production and hairy root growth. Antioxidant and antibacterial activities of extracts of A. rugosa were also assessed. The best carbon source for A. rugosa hairy root cultures was sucrose, considering biomass productivity (0.460 ± 0.034 mg/30 mL), rosmarinic acid production (7.656 ± 0.407 mg/g dry weight), and total phenolic content (12.714 ± 0.202 mg/g gallic acid equivalent). Antioxidant and antimicrobial activities were displayed by A. rugosa hairy roots cultured in liquid medium supplemented with 100 mM sucrose. Twenty-five bacterial strains, including multidrug-resistant bacteria and one pathogenic yeast strain, were used for antimicrobial screening of A. rugosa hairy roots. The hairy root extracts displayed antibacterial activity against Micrococcus luteus (KCTC 3063) and Bacillus cereus (KCTC 3624). The inhibition of these bacteria was greater using A. rugosa hairy roots with the highest levels of phenolic compounds cultured in the presence of sucrose, compared to hairy roots with the lowest levels of phenolic compounds cultured in the presence of fructose. Considering hairy root biomass, phenolic compound production, and antibacterial activity, sucrose is the best carbon source for A. rugosa hairy root cultures.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Min Jae Kwon
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Sang Yeon Han
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Correspondence: (S.U.P.); (C.H.P.)
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
- Correspondence: (S.U.P.); (C.H.P.)
| |
Collapse
|
4
|
Rajčević N, Bukvički D, Dodoš T, Marin PD. Interactions between Natural Products-A Review. Metabolites 2022; 12:metabo12121256. [PMID: 36557296 PMCID: PMC9786035 DOI: 10.3390/metabo12121256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based natural products have been used as a source for therapeutics since the dawn of civilization. According to the World Health Organization (WHO), more than 80% of the world's population relies on traditional medicine for their primary healthcare. Numerous natural extracts, widely known in Traditional Chinese Medicine, Indian Ayurveda medicine and other practices, have led to the modern discovery and development of new drugs. Plants continuously interact with their environment, producing new compounds and ever-changing combinations of existing ones. Interestingly, some of the compounds have shown lower therapeutic activity in comparison to the extract they were isolated from. These findings suggest that the higher therapeutic activity of the source extract was due to the synergistic effect of several compounds. In other words, the total therapeutic potential of the extract cannot be explained only by the sum of its parts alone. In traditional medicine, most herbal remedies are based on a mixture of plants, and it is the interaction between different constituents that amplifies their therapeutic potential. Considering the significant influence traditional medicine has on human healthcare, knowing and studying the synergistic effect of compounds is paramount in designing smart therapeutic agents.
Collapse
|
5
|
Holistic quality evaluation of commercial Agastache rugosa by multiple chromatographic and chemometric analysis. J Pharm Biomed Anal 2022; 210:114574. [PMID: 34999432 DOI: 10.1016/j.jpba.2021.114574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
In present study, a comprehensive strategy integrating multiple chromatographic and chemometric methods to simultaneously characterize the volatile and non-volatile components was developed for the holistic quality evaluation of commercial Agastache rugosa (AR), a common edible and medicinal herb, collected in China. The volatile components and the non-volatile components were characterized by GC-MS and UPLC-QTOF-MS/MS, respectively. And the data were analyzed either independently or integratively by multivariate statistical analysis (MVS) for the quality assessment of commercial samples. The results revealed that the commercial AR samples were different in both the composition and the content of volatile components. However, the compositions of non-volatile components in commercial AR were generally similar, whereas the contents of some components were different. All the results indicated that the holistic quality of commercial AR was inconsistent, and the commercial samples collected could be classified into two main groups, the volatile components were majorly responsible for the classification. Whether or not the holistic quality variations affect the efficacy of AR deserves further investigation.
Collapse
|
6
|
Evaluating the In vitro anti-cancer potential of estragole from the essential oil of Agastache foeniculum [Pursh.] Kuntze. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Park CH, Yeo HJ, Baskar TB, Park YE, Park JS, Lee SY, Park SU. In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf, and Stem Extracts of Korean Mint. Antioxidants (Basel) 2019; 8:antiox8030075. [PMID: 30917545 PMCID: PMC6466538 DOI: 10.3390/antiox8030075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023] Open
Abstract
Traditionally, Agastache rugosa (Korean mint) has been widely used to treat various infectious diseases. The aims of this study were to: (i) determine the phenylpropanoid content of the plant using high-performance liquid chromatography; (ii) undertake total anthocyanin, flavonoid, and phenolic assays; (iii) and evaluate the antioxidant and antibacterial properties of the methanol extracts from the stem, leaves, and flowers of Korean mint. The total anthocyanin, flavonoid, and phenolic content assays showed that the flowers had higher phenolic levels than the stem and leaves. The reducing power, the 2,2-diphenyl-1-picrylhydrazyl superoxide radical scavenging abilities, and the hydrogen peroxide radical scavenging activities were also evaluated so that the antioxidant activities of the extracts from the different plant parts could be evaluated. The flower extracts revealed higher antioxidant properties than the other parts. The antibacterial properties of the methanol extracts from A. rugosa were analyzed by the disc diffusion method, and the flower extracts had higher antibacterial activities against the six bacterial strains used in the study than the other parts. This study provides information on the synergistic antioxidant and antibacterial properties of phenolics derived from the different parts of Korean mint.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Thanislas Bastin Baskar
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Ye Eun Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong Seok Park
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun, Jeollanamdo 59146, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
8
|
Mesquita LSSD, Luz TRSA, Mesquita JWCD, Coutinho DF, Amaral FMMD, Ribeiro MNDS, Malik S. Exploring the anticancer properties of essential oils from family Lamiaceae. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1467443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | - Denise Fernandes Coutinho
- Department of Pharmacy, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Sonia Malik
- Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
9
|
Zielińska S, Matkowski A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache ( Lamiaceae). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 13:391-416. [PMID: 24899872 PMCID: PMC4032471 DOI: 10.1007/s11101-014-9349-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/25/2014] [Indexed: 05/24/2023]
Abstract
Agastache is a small genus of Lamiaceae, comprising 22 species of perennial aromatic medicinal herbs. In this article, we review recent advances in phytochemical, pharmacological, biotechnological and molecular research on Agastache. The phytochemical profile of all Agastache species studied to date is generally similar, consisted of two main metabolic classes-phenylpropanoids and terpenoids. In the relatively variable essential oils, most populations of different Agastache species contain over 50 % of a phenylallyl compound-estragole. Also, other volatile compounds (methyleugenol, pulegone, menthone, isomenthone and spathulenol) were reported in various proportions. Major non-volatile metabolites belong to phenolic compounds, such as caffeic acid derivatives, especially rosmarinic acid as well as several flavones and flavone glycosides like acacetin, tilianin, agastachoside, and a rare dimeric malonyl flavone (agastachin). Two unique lignans-agastenol and agastinol-were also isolated. Terpenoids include triterpenoids of oleanane-type (maslinic acid, oleanolic acid and β-amyrin), ursane-type (ursolic acid, corosolic acid and α-amyrin), and typical plant sterols, as well as abietane-type oxidized diterpenes (e.g., agastaquinone, agastol, and others). The bioactivity of various extracts or individual compounds in vitro and in vivo include antimicrobial, antiviral and anti-mutagenic activity, cytotoxic activity to cancer cell lines, and anti-nociceptive, anti-inflammatory, anti-atherogenic, antioxidant as well as biocidal activity to several foodstuff pests. Biotechnological and molecular studies have focused on in vitro propagation and enhancing the biosynthesis of bioactive metabolites in cell or organ cultures, as well as on the expression of genes involved in phenolic biosynthesis.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Borowska 211, 50-556 Wroclaw, Poland
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Bhalla Y, Gupta VK, Jaitak V. Anticancer activity of essential oils: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3643-53. [PMID: 23765679 DOI: 10.1002/jsfa.6267] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 06/02/2013] [Accepted: 06/14/2013] [Indexed: 05/06/2023]
Abstract
Natural essential oil constituents play an important role in cancer prevention and treatment. Essential oil constituents from aromatic herbs and dietary plants include monoterpenes, sesquiterpenes, oxygenated monoterpenes, oxygenated sesquiterpenes and phenolics among others. Various mechanisms such antioxidant, antimutagenic and antiproliferative, enhancement of immune function and surveillance, enzyme induction and enhancing detoxification, modulation of multidrug resistance and synergistic mechanism of volatile constituents are responsible for their chemopreventive properties. This review covers the most recent literature to summarize structural categories and molecular anticancer mechanisms of constituents from aromatic herbs and dietary plants.
Collapse
Affiliation(s)
- Yashika Bhalla
- Centre for Chemical and Pharmaceutical Sciences, Central University of Punjab, Bathinda, (Pb), 151001, India
| | | | | |
Collapse
|
11
|
Bruni R, Bianchi A, Bellardi MG. Essential oil composition ofAgastache anethiodora Britton (Lamiaceae) infected by cucumber mosaic virus (CMV). FLAVOUR FRAG J 2006. [DOI: 10.1002/ffj.1760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Lee SH, Lee HS, Moon HC, Kim DH, Park YS, Hwang B, Lee HY. The Effect of α-pinene from Pinus densiflora S. and a Polysaccharide from Angelica gigas Nakai on Differentiation and Proliferation of Human Embryonic Stem Cells. Cytotechnology 2005. [DOI: 10.1007/s10616-004-0646-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Kim JC, Kim KJ, Kim DS, Han JS. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. CHEMOSPHERE 2005; 59:1685-96. [PMID: 15894054 DOI: 10.1016/j.chemosphere.2004.10.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 10/22/2004] [Accepted: 10/25/2004] [Indexed: 05/02/2023]
Abstract
Seasonal variations of emission rates and compositions from coniferous species were measured under controlled conditions using a vegetation enclosure method. Total emission rates and compositions of monoterpene compounds from young and adult trees in different seasons were compared. It was found that the total emission rates and the components of monoterpene varied significantly with tree species, age, and season. Total emissions from C. japonica and P. koraiensis were higher for older trees than for younger trees; however, significantly higher emissions were found from younger trees for C. obtusa. Higher monoterpene emission rates from each plant were found in spring and summer compared with autumn and winter emissions.
Collapse
Affiliation(s)
- Jo-Chun Kim
- Department of Environmental Engineering, Innovative Environmental Technology Centre, Konkuk University, Seoul 143-701, South Korea.
| | | | | | | |
Collapse
|
14
|
Current awareness in flavour and fragrance. FLAVOUR FRAG J 2001. [DOI: 10.1002/ffj.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|