1
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Uehara A, Baldovini N. Volatile constituents of yuzu (
Citrus junos
Sieb.
ex
Tanaka) peel oil: A review. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayaka Uehara
- Institut de Chimie de Nice Université Côte d’Azur Nice France
| | | |
Collapse
|
3
|
Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019; 8:E523. [PMID: 31652773 PMCID: PMC6915388 DOI: 10.3390/foods8110523] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Citrus contains a range of highly beneficial bioactive compounds, such as polyphenols, carotenoids, and vitamins that show antimicrobial and antioxidant properties and help in building the body's immune system. On consumption or processing, approximately 50% of the fruit remains as inedible waste, which includes peels, seeds, pulp, and segment residues. This waste still consists of substantial quantities of bioactive compounds that cause environmental pollution and are harmful to the ecosystem because of their high biological oxygen demand. In recent years, citrus cultivation and the production of processed foods have become a major agricultural industry. In addition to being a substantial source of economy, it is an ideal and sustainable and renewable resource for obtaining bioactive compounds and co-products for food and pharmaceutical industries. In the present article, the various methods of extraction, conventional and modern, as well as separation and isolation of individual bioactive compounds from the extraction mixture and their determination have been reviewed. This article presents both aspects of extraction methods, i.e., on a small laboratory scale and on an industrial mass scale. These methods and techniques have been extensively and critically reviewed with anticipated future perspectives towards the maximum utilization of the citrus waste.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA.
| | - Rakoti Koteswararao
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
4
|
del Valle JM, Calderón D, Núñez GA. Pressure drop may negatively impact supercritical CO2 extraction of citrus peel essential oils in an industrial-size extraction vessel. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Extraction of essential oils from Mentha spicata L. ( Labiatae) via optimized supercritical carbon dioxide process. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Alexandre EMC, Moreira SA, Castro LMG, Pintado M, Saraiva JA. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1359842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elisabete M. C. Alexandre
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Silvia A. Moreira
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Luís M. G. Castro
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Porto, Portugal
| | - Jorge A. Saraiva
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturaise Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
7
|
Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A. Innovative "Green" and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review. Molecules 2017; 22:E680. [PMID: 28448474 PMCID: PMC6154587 DOI: 10.3390/molecules22050680] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Citrus is a major processed crop that results in large quantities of wastes and by-products rich in various bioactive compounds such as pectins, water soluble and insoluble antioxidants and essential oils. While some of those wastes are currently valorised by various technologies (yet most are discarded or used for feed), effective, non-toxic and profitable extraction strategies could further significantly promote the valorisation and provide both increased profits and high quality bioactives. The present review will describe and summarize the latest works concerning novel and greener methods for valorisation of citrus by-products. The outcomes and effectiveness of those technologies such as microwaves, ultrasound, pulsed electric fields and high pressure is compared both to conventional valorisation technologies and between the novel technologies themselves in order to highlight the advantages and potential scalability of these so-called "enabling technologies". In many cases the reported novel technologies can enable a valorisation extraction process that is "greener" compared to the conventional technique due to a lower energy consumption and reduced utilization of toxic solvents.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, Turin 10125, Italy.
| | - Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, Turin 10125, Italy.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/Galicia, 4, San Ciprián de Viñas, 32900 Ourense, Spain.
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
8
|
Jerković I, Družić J, Marijanović Z, Gugić M, Jokić S, Roje M. GC-FID/MS Profiling of Supercritical CO 2 Extracts of Peels from Citrus aurantium, C. sinensis cv. Washington navel, C. sinensis cv. Tarocco and C. sinensis cv. Doppio Sanguigno from Dubrovnik Area (Croatia). Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The peels of Citrus aurantium L. and Citrus sinensis Osbeck cultivars from the Dubrovnik region (south Croatia) were extracted by supercritical CO2 at 40°C and 10 MPa at 1.76 kg/h to obtain enriched extracts in comparison with simple pressing of the peels. The extracts were analyzed in detail by gas chromatography and mass spectrometry (GC-FID/MS). Relevant similarities among the peel oil compositions of C. aurantium and C. sinensis cultivars were found with limonene predominance (up to 54.3%). The principal oxygenated monoterpenes were linalool (3.0%–5.9%), α-terpineol (0.7%–2.4%), linalyl acetate (0.0%–5.0%), geranyl acetate (0.0%-0.4%), ( Z)-citral (0.0%–1.8%) and ( E)-citral (0.0%–1.9%). Several sesquiterpenes were found with minor percentages. Coumarin derivatives were identified in all the samples among the relevant compounds. Isogeijerin dominated in the peels of C. sinensis cv. Tarocco (15.3%) and C. aurantium (11.2%). Scoparone ranged from 0.1% to 0.5% in all the samples. Bergapten (up to 1.4%), osthole (up to 1.1%) and 7-methoxy-8-(2-formylpropyl)coumarin (up to 1.1%) were found mostly in C. sinensis cv. Doppio Sanguigno. It was possible to indicate a few other differences among the extracts such as higher percentage of linalool, linalyl and geranyl acetates, as well as the abundance of sabinene and isogeijerin in C. aurantium or the occurrence of β-sinensal in C. sinensis cultivars.
Collapse
Affiliation(s)
- Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, N. Tesle 10/V, HR-21000 Split, Croatia
| | - Jasmina Družić
- Department of Mediterranean Crops, University of Dubrovnik, Marka Marojice 4, HR-20000 Dubrovnik, Croatia
| | - Zvonimir Marijanović
- Department of Food Technology, Marko Marulić Polytechnic in Knin, Petra Krešimira IV 30, HR-22300 Knin, Croatia
| | - Mirko Gugić
- Department of Food Technology, Marko Marulić Polytechnic in Knin, Petra Krešimira IV 30, HR-22300 Knin, Croatia
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, University of J. J. Strossmayer, Franje Kuhača 18, HR-18000 Osijek, Croatia
| | - Marin Roje
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Gök A, İsmail Kirbaşlar Ş, Gülay Kirbaşlar F. Comparison of lemon oil composition after using different extraction methods. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.982872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Suetsugu T, Tanaka M, Iwai H, Matsubara T, Kawamoto Y, Saito C, Sasaki Y, Hoshino M, Quitain AT, Sasaki M, Sakamoto J, Goto M. Supercritical CO2 extraction of essential oil from Kabosu (Citrus sphaerocarpa Tanaka) peel. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2044-7248-2-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Citrus sphaerocarpa Hort. ex Tanaka is one of many popular sour citruses in Japan. Its juice processing peel residues contain a lot of useful compounds including essential oil. Our interests mainly focused on the extraction of this essential oil using supercritical carbon dioxide (SC-CO2), an environmentally benign and generally regarded as safe solvent that has many advantages such as low critical temperature, low viscosity, and easy separation from the extract. In this research, essential oil was extracted from Citrus sphaerocarpa Tanaka peel using SC-CO2 at extraction temperatures of 313 to 353 K and pressures of 10 to 30 MPa.
Results
A maximum yield of 1.55% (by weight of wet sample) was obtained at the temperature of 353 K and the pressure of 20 MPa. The yield obtained by SC-CO2 method was over 13 times higher than that of the conventional cold-press method. Extracted essential oil was qualitatively analyzed using GC/MS, identifying 49 compounds including several non-polar and weakly polar hydrocarbons such as terpenoid, free fatty acid, and coumarin. Compared to the extracts obtained by the conventional methods, the extracts by SC-CO2 had lower content of monoterpenes and higher content of oxygenated compounds, sesquiterpenes, which strongly contribute to the aromatic characteristics of the extracts. Auraptene, a bioactive compound was also identified in the SC-CO2 extract.
Conclusions
Kabosu essential oil with a fresh natural fragrance was effectively extracted using SC-CO2 compared to the conventional extraction method. In addition, it was found that the extract contained higher content of aromatic components that characterize Kabosu. This work provides an important sequential method for the recovery of valuable compounds from citrus fruit waste using an environmentally friendly technique.
Collapse
|
11
|
Tanaka M, Takamizu A, Hoshino M, Sasaki M, Goto M. Extraction of dietary fiber from Citrus junos peel with subcritical water. FOOD AND BIOPRODUCTS PROCESSING 2012. [DOI: 10.1016/j.fbp.2011.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ueno H, Tanaka M, Machmudah S, Sasaki M, Goto M. Supercritical Carbon Dioxide Extraction of Valuable Compounds from Citrus junos Seed. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0015-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|