1
|
Karimnejad M, Ghavam M. Comparison of quantity, quality and antibacterial activity of essential oil Mentha longifolia (L.) L. under different traditional and modern extraction methods. PLoS One 2024; 19:e0301558. [PMID: 38985711 PMCID: PMC11236116 DOI: 10.1371/journal.pone.0301558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 07/12/2024] Open
Abstract
Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 μg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.
Collapse
Affiliation(s)
- Masoumeh Karimnejad
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| | - Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| |
Collapse
|
2
|
Abd Elghani EM, El Sayed AM, Abdel-Aziz Emam MM, Al-Mahallawi AM, Tadros SH, Soliman FM, Youssef FS. Seasonal metabolic profiling of Valencia orange leaf essential oil using GC coupled with chemometrics, nano-formulation, and insecticidal evaluation: in vivo and in silico. RSC Adv 2023; 13:1659-1671. [PMID: 36688069 PMCID: PMC9827590 DOI: 10.1039/d2ra06273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Mosquitoes and mosquito-borne infectious diseases are a global challenge, especially with increased resistance to synthetic insecticides. The foregoing study aimed to utilize the essential oil of leaves of Citrus sinensis var. Valencia as a cheap, safe, eco-friendly (green), and effective alternative to chemical insecticides. Essential oil samples were collected from fresh and dried leaves across different seasons. They are subjected to hydrodistillation and then GC analysis to be compared. Seventy-seven compounds were detected in all samples where monoterpene hydrocarbons represented the most abundant class of hydrocarbons in fresh leaves (52.6-74.4%) and dried leaves (58.6-66.9%). Sabinene (8.26-29.2%), delta-3-carene (8.23-16.4%), d-limonene (2.50-11.2%), and β-myrcene (2.40-4.93%) were the major monoterpene hydrocarbons in all seasons. Oxygenated monoterpenes comprising β-linalool, citronellal, terpinen-4-ol, β-citral, and α-citral exhibited also appreciable percentages in fresh (21.2-43.4%) and dried leaves (23.4-33.0%). Hierarchical cluster analysis (HCA) and principal component analysis (PCA) effectively segregated all samples into three discriminate clusters where, β-linalool, terpinen-4-ol, β-elemene enantiomer, sabinene, and β-phellandrene constitute the main discriminatory biomarkers. Essential oil of fresh spring leaves (FS) was chosen for nano-formulation adopting the hot emulsification method. Both FS sample and the prepared nano-hexosomal formula were screened against the 3rd instar larvae Culex pipiens L. (common house mosquito). LC50 and LC95 values of FS and oil loaded nano-formula were (48 and 30 552 mg L-1) and (30 and 1830 mg L-1) respectively. α-Citral followed by citronellal showed the best fitting within the binding sites of acetylcholine esterase enzyme utilizing molecular docking. Thus, it can be concluded that Valencia orange leaf as a nano-formulation could serve as an effective and sustainable insecticidal agent.
Collapse
Affiliation(s)
- Eman M. Abd Elghani
- Pharmacognosy Department, Faculty of Pharmacy, Cairo UniversityCairo 11562Egypt+20 1115438352
| | - Abeer M. El Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo UniversityCairo 11562Egypt+20 1115438352
| | - Marwa M. Abdel-Aziz Emam
- Medical Microbiology Department, The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairoEgypt
| | - Abdulaziz M. Al-Mahallawi
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo UniversityCairoEgypt,School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic FoundationNew Administrative CapitalCairoEgypt
| | - Soad H. Tadros
- Pharmacognosy Department, Faculty of Pharmacy, Cairo UniversityCairo 11562Egypt+20 1115438352
| | - Fathy M. Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo UniversityCairo 11562Egypt+20 1115438352
| | - Fadia S. Youssef
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams UniversityCairo 11566Egypt
| |
Collapse
|
3
|
Fuchs LK, Holland AH, Ludlow RA, Coates RJ, Armstrong H, Pickett JA, Harwood JL, Scofield S. Genetic Manipulation of Biosynthetic Pathways in Mint. FRONTIERS IN PLANT SCIENCE 2022; 13:928178. [PMID: 35774811 PMCID: PMC9237610 DOI: 10.3389/fpls.2022.928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the study of aromatic plants has seen an increase, with great interest from industrial, academic, and pharmaceutical industries. Among plants attracting increased attention are the Mentha spp. (mint), members of the Lamiaceae family. Mint essential oils comprise a diverse class of molecules known as terpenoids/isoprenoids, organic chemicals that are among the most diverse class of naturally plant derived compounds. The terpenoid profile of several Mentha spp. is dominated by menthol, a cyclic monoterpene with some remarkable biological properties that make it useful in the pharmaceutical, medical, cosmetic, and cleaning product industries. As the global market for Mentha essential oils increases, the desire to improve oil composition and yield follows. The monoterpenoid biosynthesis pathway is well characterised so metabolic engineering attempts have been made to facilitate this improvement. This review focuses on the Mentha spp. and attempts at altering the carbon flux through the biosynthetic pathways to increase the yield and enhance the composition of the essential oil. This includes manipulation of endogenous and heterologous biosynthetic enzymes through overexpression and RNAi suppression. Genes involved in the MEP pathway, the menthol and carvone biosynthetic pathways and transcription factors known to affect secondary metabolism will be discussed along with non-metabolic engineering approaches including environmental factors and the use of plant growth regulators.
Collapse
Affiliation(s)
- Lorenz K. Fuchs
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Ryan J. Coates
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Harvey Armstrong
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - John A. Pickett
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - John L. Harwood
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Cirak C, Seyis F, Özcan A, Yurteri E. Ontogenetic changes in phenolic contents and volatile composition of Hypericum androsaemum and Hypericum xylosteifolium. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Patonay K, Szalontai H, Radácsi P, Zámboriné-Németh É. Chemotypes and Their Stability in Mentha longifolia (L.) L.-A Comprehensive Study of Five Accessions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112478. [PMID: 34834841 PMCID: PMC8622948 DOI: 10.3390/plants10112478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Mentha longifolia (L.) L. is the most widespread wild-growing mint species found, and its chemical composition is extremely diverse. We studied the essential oil (EO) yield, composition, and chemotaxonomy of five, northern Hungarian accessions of the species in a cultivation experiment covering two vegetation years at two parallel sites. The long-term goal is to establish the cultivation of this stress-tolerant species in Hungary as a source of flavoring and preservative agents for commercial use. Essential oil yield (1-2 mL/100 g) was observed to be dependent on both the accession and the year. Accession HV1 is assumed to be a new, presumably rare chemotype containing carvacrol (19.28-20.56%), 1,8-cineole (14.87-17.45%), thymol (13.36-13.90%), carvacryl acetate (8.81-10.40%), and para-cymene (7.24-8.01%). Only minor fluctuations occurred in concentrations of these constituents due to habitats and years. A radical change in essential oil composition was observed in accession HV2, as one batch was based on thymol (19.79%) and 1,8-cineole (14.93%), while the others were rich in dihydrocarvone isomers (up to 69%). Although this needs further investigation, it does explain the coexistence of limonene-oxo and γ-terpinene pathways in horsemint. According to the literature, the pathway leading to thymol isomers and/or esters may be rare in the entire Mentha genus. We also demonstrated that known chemotypes of horsemint may differ in variability of their EO composition. Our results also led to the conclusion that any declaration on chemotype needs detailed examination and is not realistic on the basis of a single sample. Assumptions were made about the potential areas of utilization: beside fragrance and flavoring uses of essential oils free from pulegone and menthofurane, thymol-based ones may be used as antioxidative and anti-spoilage agents.
Collapse
Affiliation(s)
- Katalin Patonay
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka St. 6 Building G, H-3300 Eger, Hungary;
| | - Helga Szalontai
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka St. 6 Building G, H-3300 Eger, Hungary;
| | - Péter Radácsi
- Department and Medicinal and Aromatic Plants, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, Villányi St. 29-43, H-1118 Budapest, Hungary; (P.R.); (É.Z.-N.)
| | - Éva Zámboriné-Németh
- Department and Medicinal and Aromatic Plants, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, Villányi St. 29-43, H-1118 Budapest, Hungary; (P.R.); (É.Z.-N.)
| |
Collapse
|