1
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
2
|
Guo L, Qi Y, Mu Y, Zhou J, Lu W, Tian Z. Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8. HORTICULTURE RESEARCH 2022; 9:uhac010. [PMID: 35147183 PMCID: PMC9016858 DOI: 10.1093/hr/uhac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 05/13/2023]
Abstract
Plant receptor-like kinases (RLKs) regulate many processes in plants. Many RLKs perform significant roles in plant immunity. Lectin receptor-like kinases (LecRLKs) are a large family of RLKs. However, the function of most of LecRLKs is poorly understood. In this study, we show that a potato LecRLK, StLecRK-IV.1, is involved in plant immunity against Phytophthora infestans. As a negative regulator of immunity, StLecRK-IV.1 is down-regulated by P. infestans and activated by abscisic acid (ABA). The transient expression of StLecRK-IV.1 in Nicotiana benthamiana enhanced P. infestans leaf colonization significantly. In contrast, the disease lesion size caused by P. infestans was reduced in Virus-induced gene silencing (VIGS) of StLecRK-IV.1 orthologue in N. benthamiana, NbLecRK-IV.1, as well as in potato plants with stable RNA interference of StLecRK-IV.1. Tetraspanin-8 (StTET8) was identified to be interacting with StLecRK-IV.1 using a membrane yeast-2-hybrid system, which was further verified by co-immunoprecipitation, a luciferase complementation assay, and a bimolecular fluorescence complementary (BiFC) test. StTET8 is a positive immune regulator that restrains P. infestans infection. The co-expression of StLecRK-IV.1 with StTET8 antagonized the positive roles of StTET8 against P. infestans. Moreover, the co-expression of StTET8 with StLecRK-IV.1 affected the stability of StTET8, which was confirmed by a Western blot assay and confocal assay. Taken together, our work firstly revealed that a potato L-type Lectin RLK, StLecRK-IV.1, negatively regulates plant immunity by targeting a positive regulator, StTET8, through affecting its stability.
Collapse
Affiliation(s)
- Lei Guo
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Mu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhe Lu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory. Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Haider MS, De Britto S, Nagaraj G, Gurulingaiah B, Shekhar R, Ito SI, Jogaiah S. Genome-Wide Identification, Diversification, and Expression Analysis of Lectin Receptor-Like Kinase (LecRLK) Gene Family in Cucumber under Biotic Stress. Int J Mol Sci 2021; 22:6585. [PMID: 34205396 PMCID: PMC8234520 DOI: 10.3390/ijms22126585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.
Collapse
Affiliation(s)
- Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Savitha De Britto
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India;
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Geetha Nagaraj
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Bhavya Gurulingaiah
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Ravikant Shekhar
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Shin-ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India;
| |
Collapse
|
4
|
Singh P, Mishra AK, Singh CM. Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). J Appl Genet 2021; 62:223-234. [PMID: 33469874 DOI: 10.1007/s13353-021-00613-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Lectins are a diverse group of proteins found throughout plant species. Numerous lectins are involved in many important processes such as organogenesis, defense mechanism, signaling, and stress response. Although the mungbean whole genome sequence has been published, distribution, diversification, and gene structure of lectin genes in mungbean are still unknown. A total of 73 putative lectin genes with kinase domain have been identified through BLAST and HMM profiling. Furthermore, these sequences could be classified into three families, such as G-type, L-type, and C-type VrLecRLKs. 59 out of 73 VrLecRLKs were distributed on to 11 chromosomes, whereas rest could not be anchored onto any specific chromosome. Gene structure analysis revealed a varying number of exons in 73 VrLecRLK genes. Gene ontology annotations were grouped into three categories like biological processes, cellular components and molecular functions, which were associated with signaling pathways, defense responses, transferase activity, binding activity, and kinase activity. The comprehensive and systematic studies of LecRLK genes family provides a reference and foundation for further functional analysis of VrLecRLK genes in mungbean.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | | | - Chandra Mohan Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India.
| |
Collapse
|
5
|
Zhang W, Chen Z, Kang Y, Fan Y, Liu Y, Yang X, Shi M, Yao K, Qin S. Genome-wide analysis of lectin receptor-like kinases family from potato ( Solanum tuberosum L.). PeerJ 2020; 8:e9310. [PMID: 32566405 PMCID: PMC7293193 DOI: 10.7717/peerj.9310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are involved in responses to diverse environmental stresses and pathogenic microbes. A comprehensive acknowledgment of the family members in potato (Solanum tuberosum) genome is largely limited until now. In total, 113 potato LecRLKs (StLecRLKs) were first identified, including 85 G-type, 26 L-type and 2 C-type members. Based on phylogenetic analysis, StLecRLKs were sub-grouped into seven clades, including C-type, L-type, G-I, G-II, G-III G-IV and G-V. Chromosomal distribution and gene duplication analysis revealed the expansion of StLecRLKs occurred majorly through tandem duplication although the whole-genome duplication (WGD)/segmental duplication events were found. Cis-elements in the StLecRLKs promoter region responded mainly to signals of defense and stress, phytohormone, biotic or abiotic stress. Moreover, expressional investigations indicated that the family members of the clades L-type, G-I, G-IV and G-V were responsive to both bacterial and fungal infection. Based on qRT-PCR analysis, the expressions of PGSC0003DMP400055136 and PGSC0003DMP400067047 were strongly induced in all treatments by both Fusarium sulphureum (Fs) and Phytophthora infestans (Pi) inoculation. The present study provides valuable information for LecRLKs gene family in potato genome, and establishes a foundation for further research into the functional analysis.
Collapse
Affiliation(s)
- Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Ma N, Liu C, Li H, Wang J, Zhang B, Lin J, Chang Y. Genome-wide identification of lectin receptor kinases in pear: Functional characterization of the L-type LecRLK gene PbLRK138. Gene 2018; 661:11-21. [PMID: 29601951 DOI: 10.1016/j.gene.2018.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptors that are believed to be involved in biotic and abiotic stress responses. However, little is known about the LecRLK family in pear. In this study, a total of 172 LecRLK genes were first identified in the entire pear genome. The 172 LecRLKs were divided into three types (111 G-, 59 L- and two C-types) based on their structure and phylogenetic relationships. LecRLKs gene expressions were detected in different pear tissues including roots, stems, leaves, flowers and fruits, and the most of the 11 selected LecRLKs exhibited similar expression patterns. Furthermore, six selected LecRLKs were shown to be involved in salt stress response. Overexpression of PbLRK138, an L-type LecRLK, caused cell death and induced expression of defense-related genes in Nicotiana benthamiana. Two deletion mutants containing lectin or transmembrane and serine/threonine kinase domains did not trigger cell death. In addition, only the mutant with the transmembrane domain was localized to the plasma membrane.
Collapse
Affiliation(s)
- Na Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chunxiao Liu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Hui Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyan Wang
- Institute of Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Institute of Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China.
| |
Collapse
|
7
|
SGT1 is required in PcINF1/SRC2-1 induced pepper defense response by interacting with SRC2-1. Sci Rep 2016; 6:21651. [PMID: 26898479 PMCID: PMC4761932 DOI: 10.1038/srep21651] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
PcINF1 was previously found to induce pepper defense response by interacting with SRC2-1, but the underlying mechanism remains uninvestigated. Herein, we describe the involvement of SGT1 in the PcINF1/SRC2-1-induced immunity. SGT1 was observed to be up-regulated by Phytophthora capsici inoculation and synergistically transient overexpression of PcINF1/SRC2-1 in pepper plants. SGT1-silencing compromised HR cell death, blocked H2O2 accumulation, and downregulated HR-associated and hormones-dependent marker genes’ expression triggered by PcINF1/SRC2-1 co-overexpression. The interaction between SRC2-1 and SGT1 was found by the yeast two hybrid system and was further confirmed by bimolecular fluorescence complementation and co-immunoprecipitation analyses. The SGT1/SRC2-1 interaction was enhanced by transient overexpression of PcINF1 and Phytophthora capsici inoculation, and SGT1-silencing attenuated PcINF1/SRC2-1 interaction. Additionally, by modulating subcellular localizations of SRC2-1, SGT1, and the interacting complex of SGT1/SRC2-1, it was revealed that exclusive nuclear targeting of the SGT1/SRC2-1 complex blocks immunity triggered by formation of SGT1/SRC2-1, and a translocation of the SGT1/SRC2-1 complex from the plasma membrane and cytoplasm to the nuclei upon the inoculation of P. capsici. Our data demonstrate that the SGT1/SRC2-1 interaction, and its nucleocytoplasmic partitioning, is involved in pepper’s immunity against P. capsici, thus providing a molecular link between Ca2+ signaling associated SRC2-1 and SGT1-mediated defense signaling.
Collapse
|
8
|
Liu ZQ, Qiu AL, Shi LP, Cai JS, Huang XY, Yang S, Wang B, Shen L, Huang MK, Mou SL, Ma XL, Liu YY, Lin L, Wen JY, Tang Q, Shi W, Guan DY, Lai Y, He SL. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3683-98. [PMID: 25922484 DOI: 10.1093/jxb/erv161] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.
Collapse
Affiliation(s)
- Zhi-qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-lian Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lan-ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jin-sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xue-ying Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bo Wang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lei Shen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mu-kun Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shao-liang Mou
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiao-Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan-yan Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lin Lin
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jia-yu Wen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Qian Tang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wei Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - De-yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan Lai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shui-lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
9
|
Vaid N, Macovei A, Tuteja N. Knights in action: lectin receptor-like kinases in plant development and stress responses. MOLECULAR PLANT 2013; 6:1405-18. [PMID: 23430046 DOI: 10.1093/mp/sst033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus making the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.
Collapse
Affiliation(s)
- Neha Vaid
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
10
|
Vaid N, Pandey PK, Tuteja N. Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. PLANT MOLECULAR BIOLOGY 2012; 80:365-88. [PMID: 22936328 DOI: 10.1007/s11103-012-9952-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/31/2012] [Indexed: 05/22/2023]
Abstract
Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.
Collapse
Affiliation(s)
- Neha Vaid
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
11
|
Joshi A, Dang HQ, Vaid N, Tuteja N. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 2010; 27:133-50. [PMID: 19898933 DOI: 10.1007/s10719-009-9265-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/01/2022]
Abstract
The plant lectin receptor-like kinases (LecRLKs) are involved in various signaling pathways but their role in salinity stress tolerance has not heretofore been well described. Salinity stress negatively affects plant growth/productivity and threatens food security worldwide. Based on functional gene-mining assay, we have isolated 34 salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs grown in 0.8 M NaCl. Sequence analysis of one of these revealed homology to LecRLK, which possesses N-myristilation and N-glycosylation sites thus corroborating the protein to be a glycoconjugate. The homology based computational modeling of the kinase domain suggested high degree of conservation with the protein already known to be stress responsive in plants. The NaCl tolerance provided by PsLecRLK to the above bacteria was further confirmed in E. coli (DH5alpha). In planta studies showed that the expression of PsLecRLK cDNA was significantly upregulated in response to NaCl as compared to K(+) and Li(+) ions, suggesting the Na(+) ion specific response. Transcript of the PsLecRLK gene accumulates mainly in roots and shoots. The purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to phosphorylate general substrates like MBP and casein. This study not only suggests the conservation of the cellular response to high salinity stress across prokaryotes and plant kingdom but also provides impetus to develop novel concepts for better understanding of mechanism of stress tolerance in bacteria and plants. It also opens up new avenues for studying practical aspects of plant salinity tolerance for enhanced agricultural productivity.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- DNA, Complementary/genetics
- Escherichia coli/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Models, Molecular
- Molecular Sequence Data
- Pisum sativum/enzymology
- Pisum sativum/genetics
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/isolation & purification
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Mitogen/chemistry
- Receptors, Mitogen/genetics
- Receptors, Mitogen/isolation & purification
- Receptors, Mitogen/metabolism
- Recombinant Proteins/metabolism
- Salinity
- Salt-Tolerant Plants/enzymology
- Salt-Tolerant Plants/genetics
- Sequence Analysis, DNA
- Sodium/metabolism
- Stress, Physiological
- Structural Homology, Protein
- Transformation, Genetic
Collapse
Affiliation(s)
- Amita Joshi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
12
|
Pandelova I, Betts MF, Manning VA, Wilhelm LJ, Mockler TC, Ciuffetti LM. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. MOLECULAR PLANT 2009; 2:1067-83. [PMID: 19825681 DOI: 10.1093/mp/ssp045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.
Collapse
Affiliation(s)
- Iovanna Pandelova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
13
|
De Hoff PL, Brill LM, Hirsch AM. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 2009; 282:1-15. [PMID: 19488786 PMCID: PMC2695554 DOI: 10.1007/s00438-009-0460-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 05/10/2009] [Indexed: 12/12/2022]
Abstract
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.
Collapse
Affiliation(s)
- Peter L De Hoff
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
14
|
Babosha AV. Inducible lectins and plant resistance to pathogens and abiotic stress. BIOCHEMISTRY (MOSCOW) 2008; 73:812-25. [PMID: 18707590 DOI: 10.1134/s0006297908070109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lectin concentration (activity) increases in plant tissues upon infection by pathogens, in response to abiotic stress, as well as during growth and development of tissues. Such a broad range of events accompanied by accumulation of lectins is indicative of their involvement in regulation of integral processes in plant cells. Data concerning the role of lectins in regulation of oxidative stress and stress-induced cytoskeleton rearrangements are presented.
Collapse
Affiliation(s)
- A V Babosha
- Tsitsin Main Botanical Garden, Russian Academy of Sciences, Moscow, 127276, Russia.
| |
Collapse
|