Ho LP, Neitzel A, Bannenberg T, Tamm M. Rhodium and Iridium Complexes of Anionic Thione and Selone Ligands Derived from Anionic N-Heterocyclic Carbenes.
Chemistry 2021;
28:e202104139. [PMID:
34878696 PMCID:
PMC9305287 DOI:
10.1002/chem.202104139]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/21/2022]
Abstract
The lithium salts of anionic N‐heterocyclic thiones and selones [{(WCA‐IDipp)E}Li(toluene)] (1: E=S; 2: E=Se; WCA=B(C6F5)3, IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene), which contain a weakly coordinating anionic (WCA) borate moiety in the imidazole backbone were reacted with Me3SiCl, to furnish the silylated adducts (WCA‐IDipp)ESiMe3 (3: E=S; 4: E=Se). The reaction of the latter with [(η5‐C5Me5)MCl2]2 (M=Rh, Ir) afforded the rhodium(III) and iridium(III) half‐sandwich complexes [{(WCA‐IDipp)E}MCl(η5‐C5Me5)] (5–8). The direct reaction of the lithium salts 1 and 2 with a half or a full equivalent of [M(COD)Cl]2 (M=Rh, Ir) afforded the monometallic complexes [{(WCA‐IDipp)E}M(COD)] (9–12) or the bimetallic complexes [μ2‐{(WCA‐IDipp)E}M2(COD)2(μ2‐Cl)] (13–16), respectively. The bonding situation in these complexes has been investigated by means of density functional theory (DFT) calculations, revealing thiolate or selenolate ligand character with negligible metal‐chalcogen π‐interaction.
Collapse