1
|
Frecentese F, Sodano F, Corvino A, Schiano ME, Magli E, Albrizio S, Sparaco R, Andreozzi G, Nieddu M, Rimoli MG. The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. Int J Mol Sci 2023; 24:10722. [PMID: 37445897 DOI: 10.3390/ijms241310722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The use of alternative energy sources, such as microwaves (MW) or ultrasounds (US), and their mutual cross-combination have been widely described in the literature in the development of new synthetic methodologies in organic and medicinal chemistry. In this review, our attention is focused on representative examples, reported in the literature in the year range 2013-2023 of selected N-containing bicyclic heterocycles, with the aim to highlight the advantages of microwave- and ultrasound-assisted organic synthesis.
Collapse
Affiliation(s)
| | - Federica Sodano
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | | | - Elisa Magli
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Stefania Albrizio
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Giorgia Andreozzi
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| |
Collapse
|
2
|
Li N, Zhang T, Wu Z, Li J, Wang W, Zhu J, Yao S, Gao E. Rationally tailored redox ability of Sn/γ-Al 2O 3 with Ag for enhancing the selective catalytic reduction of NO x with propene. RSC Adv 2023; 13:1738-1750. [PMID: 36712644 PMCID: PMC9832442 DOI: 10.1039/d2ra07316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The development of excellent selective catalytic reduction (SCR) catalysts with hydrocarbons for lean-burn diesel engines is of great significance, and a range of novel catalysts loaded with Sn and Ag were studied in this work. It was found that the synergistic effects of Sn and Ag enabled the 1Sn5Ag/γ-Al2O3 (1 wt% Sn and 5wt% Ag) to exhibit superior C3H6-SCR performance. The de-NO x efficiency was maintained above 80% between 336 and 448 °C. The characterization results showed that the presence of AgCl crystallites in the 1Sn5Ag/γ-Al2O3 catalyst helped its redox ability maintain an appropriate level, which suppressed the over-oxidation of C3H6. Besides, the number of surface adsorbed oxygen (Oα) and hydroxyl groups (Oγ) were enriched, and their reactivity was greatly enhanced due to the coexistence of Ag and Sn. The ratio of Ag0/Ag+ was increased to 3.68 due to the electron transfer effects, much higher than that of Ag/γ-Al2O3 (2.15). Lewis acid sites dominated the C3H6-SCR reaction over the 1Sn5Ag/γ-Al2O3 catalyst. The synergistic effects of Sn and Ag facilitated the formation of intermediates such as acetates, enolic species, and nitrates, and inhibited the deep oxidation of C3H6 into CO2, and the C3H6-SCR mechanism was carefully proposed.
Collapse
Affiliation(s)
- Ning Li
- School of Petrochemical Engineering, Changzhou UniversityJiangsu213164China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou UniversityJiangsu213164China,Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou UniversityJiangsu213164China
| |
Collapse
|
3
|
Ting-ting X, Gang-gang L, Kai-hua Z, Xin-yan Z, Xin Z, Shao-qing Z. Effective reduction of nitric oxide over a core-shell Cu-SAPO-34@Fe-MOR zeolite catalyst. RSC Adv 2022; 13:638-651. [PMID: 36605656 PMCID: PMC9780741 DOI: 10.1039/d2ra06708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, a core-shell catalyst of Cu-SAPO-34@Fe-MOR was successfully prepared through a silica-sol adhesion method, and its performance for selective catalytic reduction of nitric oxide by NH3 (NH3-SCR) was evaluated in detail. The Fe-MOR coating has not only increased the high-temperature activity and broadened the reaction temperature window of Cu-SAPO-34 to a large extent, but also increased the hydrothermal stability of Cu-SAPO-34 markedly. It is demonstrated that a strong synergistic interaction effect exists between Cu2+ and Fe3+ ions and promotes the redox cycle and oxidation-reduction ability of copper ions, which greatly accelerates the catalytic performance of the core-shell Cu-SAPO-34@Fe-MOR catalyst. Abundant isolated Cu2+ ions and Fe3+ ions on the ion exchange sites performing NO x reduction at low and high temperature region lead to the broad reaction temperature window of Cu-SAPO-34@Fe-MOR. In addition, more weakly adsorbed NO x species formed and the increased number of Lewis acid sites may also contribute to the higher catalytic performance of Cu-SAPO-34@Fe-MOR. On the other hand, the better hydrothermal ageing stability of Cu-SAPO-34@Fe-MOR is related to its lighter structural collapse, fewer acidic sites lost, more active components (Cu2+ and Fe3+) maintained, and more monodentate nitrate species formed in the core-shell catalyst after hydrothermal ageing. Last, the mechanism study has found that both Langmuir-Hinshelwood ("L-H") and Eley-Rideal ("E-R") mechanisms play an essential role in the catalytic process of Cu-SAPO-34@Fe-MOR, and constitute another reason for its higher activity compared with that of Cu-SAPO-34 (only "L-H" mechanism).
Collapse
Affiliation(s)
- Xu Ting-ting
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Li Gang-gang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of SciencesBeijing 101408P. R. China
| | - Zheng Kai-hua
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Xin-yan
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152,Chongqing Research Institute, Changchun University of Science and TechnologyChongqing 401135P. R. China
| | - Zhang Xin
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Shao-qing
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences4888 Shengbei Street, North District of Changchun High, ChangchunJilin 130102China
| |
Collapse
|
4
|
Tople MS, Patel NB, Patel PP, Purohit AC, Ahmad I, Patel H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7- Chloroquinoline based Schiff-bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Salem MA, Gouda MA, El-Bana GG. Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666211001124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18
through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate
for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2-
(piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions:
acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot
multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s
reaction.
Collapse
Affiliation(s)
- Mohammed A. Salem
- Department of Chemistry, Faculty of Arts and Science, Mohail Asir, King Khalid University, Rafha, Saudia Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Ghada G. El-Bana
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
- Laboratory Department, Mansoura University Student Hospital, Mansoura University, El-Gomhoria Street, Mansoura ET- 35516, Egypt
| |
Collapse
|
6
|
Synthesis and Properties of SrTiO 3 Ceramic Doped with Sm 2O 3. MATERIALS 2021; 14:ma14247549. [PMID: 34947145 PMCID: PMC8706045 DOI: 10.3390/ma14247549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
The aim of this work was to study the effect of samarium oxide doping on a SrTiO3 perovskite ceramic. After analyzing the data obtained on the morphological features of the synthesized structures, it was found that an increase in the dopant concentration led not only to a change in the morphological features, but also in the density of the ferroelectrics. Using the X-ray diffraction method, it was found that doping with Sm2O3 led to the formation of a multiphase system of two cubic phases of SrTiO3 and Sm2O3. At the same time, an increase in the concentration of Sm2O3 dopant led to a change in the crystallinity degree, as well as deformation of the structure. Evaluation of the efficiency of use of synthesized ferroelectrics as catalysts for purification of aqueous media from manganese showed that an increase in the concentration of Sm2O3 dopant led to an increase in purification efficiency by 50–70%.
Collapse
|
7
|
Diethyl [(4-{(9H-carbazol-9-yl)methyl}-1H-1,2,3-triazol-1-yl)(benzamido)methyl]phosphonate. MOLBANK 2020. [DOI: 10.3390/m1167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The title compound, diethyl [(4-{(9H-carbazol-9-yl)methyl}-1H-1,2,3-triazol-1-yl)(benzamido)methyl]phosphonate, was synthesized with excellent yield and high regioselectivity through 1,3-dipolar cycloaddition reaction between the α-azido diethyl amino methylphosphonate and the heterocyclic alkyne, 9-(prop-2-yn-1-yl)-9H-carbazole. The cyclization reaction by “click chemistry” was carried out in a water/ethanol solvent mixture (50/50), in the presence of copper sulfate pentahydrate and catalytic sodium ascorbate. The characterization of the structure of the resulting 1,4-regioisomer was performed by 1D and 2D-NMR experiments, infrared spectroscopy, and elemental analysis.
Collapse
|