1
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Bou Malhab LJ, Alsafar H, Ibrahim S, Rahmani M. PROTACs: Walking through hematological malignancies. Front Pharmacol 2023; 14:1086946. [PMID: 36909156 PMCID: PMC9994433 DOI: 10.3389/fphar.2023.1086946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that uses the proteasome ubiquitin system to target proteins of interest and promote their degradation with remarkable selectivity. Importantly, unlike conventional small molecule inhibitors, PROTACs have proven highly effective in targeting undruggable proteins and those bearing mutations. Because of these considerations, PROTACs have increasingly become an emerging technology for the development of novel targeted anticancer therapeutics. Interestingly, many PROTACs have demonstrated a great potency and specificity in degrading several oncogenic drivers. Many of these, following extensive preclinical evaluation, have reached advanced stages of clinical testing in various cancers including hematologic malignancies. In this review, we provide a comprehensive summary of the recent advances in the development of PROTACs as therapeutic strategies in diverse hematological malignancies. A particular attention has been given to clinically relevant PROTACs and those targeting oncogenic mutants that drive resistance to therapies. We also discus limitations, and various considerations to optimize the design for effective PROTACs.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Ibrahim
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Hu S, Liu J, Chen S, Gao J, Zhou Y, Liu T, Dong X. Discover Novel Covalent Inhibitors Targeting FLT3 through Hybrid Virtual Screening Strategy. Biol Pharm Bull 2021; 44:1872-1877. [PMID: 34853270 DOI: 10.1248/bpb.b21-00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) plays a very important role in regulating the proliferation, differentiation and survival of normal hematopoietic stem cells. Internal tandem duplications of the FLT3 gene (FLT3-ITD) mutations are present in 25% of all acute myeloid leukemia (AML) patients and are frequently associated with adverse clinical outcomes. Therefore, FLT3-ITD is a promising target for the treatment of AML. The use of covalent virtual screenings has shown that efficient rational approaches for the rapid discovery of new drugs scaffold. Herein, we report a hybrid virtual screening strategy that led to the discovery of FLT3 inhibitors. Using the combination of non-covalent docking and covalent docking, 8 compounds were found to inhibit FLT3, and G856-8335, S346-0154 are also effective against mutant FLT3. These two compounds also show selectivity to receptor tyrosine kinase (C-KIT), which has the potential for optimization. And this work can be extended to the screening of other covalent inhibitors.
Collapse
Affiliation(s)
- Shengquan Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Jing Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Sikang Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | - Tao Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University.,Cancer Center, Zhejiang University.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University
| |
Collapse
|
4
|
Song IC, Jo DY, Kim HJ, Min YH, Hong DS, Lee WS, Shin HJ, Lee JH, Park J, Kim HJ. Clinical features and outcomes of hypocellular acute myeloid leukemia in adults: A Korean AML registry data. Medicine (Baltimore) 2021; 100:e24185. [PMID: 33429807 PMCID: PMC7793401 DOI: 10.1097/md.0000000000024185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/12/2020] [Indexed: 01/05/2023] Open
Abstract
The hypocellular variant of acute myeloid leukemia (AML) is defined as bone marrow cellularity of <20% in a biopsy specimen at presentation. We performed a retrospective analysis of the clinical features and survival outcomes of hypocellular AML in a Korean population. We reviewed the medical records of all patients diagnosed with AML at nine hospitals participating in the Korean AML registry from 2006 to 2012. Overall survival (OS) and event-free survival (EFS) rates were calculated from the time of diagnosis until death or an event, respectively. In total, 2110 patients were enrolled and 102 (4.8%) were identified as having hypocellular AML. Patients with hypocellular AML were older than those with non-hypocellular AML (median age: 59 vs 49 years; P < .001) and presented with leukopenia more frequently (mean white blood cell count: 5810/μL vs 40549/μL; P < .001). There was no difference between patients with and without hypocellular AML in terms of the presence of antecedent hematologic disorders (5.9% vs 5.3%; P = .809). FLT3-ITD and NPM1 mutations were less common in hypocellular than non-hypocellular AML (FLT3-ITD mutations: 1.2% vs 14.3%, P < .001; NPM1 mutations: 0% vs 9.5%, P = .019). No differences were seen between the hypocellular and non-hypocellular AML groups in the complete remission rate (53.9% vs 61.3%, P = .139) or early death rate (defined as any death before 8 weeks; 14.7% vs 13.0%, P = .629). The OS and EFS did not differ between the hypocellular and non-hypocellular AML groups (median OS: 16 vs 23 months, P = .169; median EFS: 6 vs 9 months, P = .215). Hypocellular AML is more frequently observed in older-aged patients and have fewer FLT3-ITD and NPM1 mutation, but the clinical outcomes of hypocellular AML do not differ from those of non-hypocellular AML.
Collapse
Affiliation(s)
- Ik-Chan Song
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon
| | - Deog-Yeon Jo
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon
| | - Hyeoung-Joon Kim
- Division of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do
| | - Yoo-Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - Dae Sik Hong
- Department of Hemato-Oncolgy, Soon Chun Hyang University Hospital, Bucheon
| | - Won-Sik Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, School of Medicine, Pusan National University Hospital, Pusan
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Jinny Park
- Division of Hematology-Oncology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon
| | - Hee-Je Kim
- Department of Hematology, Leukemia Research Institute, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, South Korea
| |
Collapse
|
5
|
He R, Devine DJ, Tu ZJ, Mai M, Chen D, Nguyen PL, Oliveira JL, Hoyer JD, Reichard KK, Ollila PL, Al-Kali A, Tefferi A, Begna KH, Patnaik MM, Alkhateeb H, Viswanatha DS. Hybridization capture-based next generation sequencing reliably detects FLT3 mutations and classifies FLT3-internal tandem duplication allelic ratio in acute myeloid leukemia: a comparative study to standard fragment analysis. Mod Pathol 2020; 33:334-343. [PMID: 31471587 PMCID: PMC7051912 DOI: 10.1038/s41379-019-0359-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023]
Abstract
FLT3-internal tandem duplication occurs in 20-30% of acute myeloid leukemia and confers an adverse prognosis with its allelic ratio being a key risk stratifier. The US Food and Drug Administration recently approved FLT3 inhibitors midostaurin and gilteritinib in FLT3 mutation-positive acute myeloid leukemia. Historically, FLT3 was tested by fragment analysis, which has become the standard method endorsed by international guidelines. However, next generation sequencing is increasingly used at acute myeloid leukemia diagnosis given its ability to simultaneously evaluate multiple clinically informative markers. As FLT3-internal tandem duplication detection was known to be challenging by next generation sequencing and the results carry profound prognostic and therapeutic implications, it is important to thoroughly examine its performance in FLT3-internal tandem duplication detection and allelic ratio classification. In a comparative study with fragment analysis, we retrospectively reviewed our experience using a custom-designed, hybridization capture-based, targeted next generation sequencing panel. Among 7902 cases, FLT3-internal tandem duplication was detected in 335 with variable sizes (3-231 bp) and insertion sites. Fragment analysis was also performed in 402 cases, demonstrating 100% concordance in FLT3-internal tandem duplication detection. In 136 dual-tested, positive cases, 128/136 (94%) exhibited concordant high/low allelic ratio classifications. The remaining 6% showed borderline low allelic ratio by next generation sequencing. The two methods were concordant in FLT3-tyrosine kinase domain mutation detection at the hotspot D835/I836 targeted by fragment analysis. Furthermore, seven mutations which may benefit from FLT3 inhibitor therapy were detected by next generation sequencing, in regions not covered by fragment analysis. Our study demonstrates that using a hybridization capture-based chemistry and optimized bioinformatics pipeline, next generation sequencing can reliably detect FLT3-internal tandem duplication and classify its allelic ratio for acute myeloid leukemia risk stratification. Next generation sequencing also exhibits superior comprehensiveness in FLT3 mutation detection and may further improve personalized, targeted therapy in acute myeloid leukemia.
Collapse
Affiliation(s)
- Rong He
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Daniel J Devine
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zheng Jin Tu
- Biomedical statistics and informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ming Mai
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Phuong L Nguyen
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Oliveira
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James D Hoyer
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paul L Ollila
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kebede H Begna
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hassan Alkhateeb
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David S Viswanatha
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
6
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
7
|
Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci 2019; 111:312-322. [PMID: 31821677 PMCID: PMC7004512 DOI: 10.1111/cas.14274] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that plays an important role in hematopoietic cell survival, proliferation and differentiation. The most clinically important point is that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients. There are two major types of FLT3 mutations: internal tandem duplication mutations in the juxtamembrane domain (FLT3-ITD) and point mutations or deletion in the tyrosine kinase domain (FLT3-TKD). Both mutant FLT3 molecules are activated through ligand-independent dimerization and trans-phosphorylation. Mutant FLT3 induces the activation of multiple intracellular signaling pathways, mainly STAT5, MAPK and AKT signals, leading to cell proliferation and anti-apoptosis. Because high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis, clinical development of FLT3 kinase inhibitors expected. Although several FLT3 inhibitors have been developed, it takes more than 20 years from the first identification of FLT3 mutations until FLT3 inhibitors become clinically available for AML patients with FLT3 mutations. To date, three FLT3 inhibitors have been clinically approved as monotherapy or combination therapy with conventional chemotherapeutic agents in Japan and/or Europe and United states. However, several mechanisms of resistance to FLT3 inhibitors have already become apparent during their clinical trials. The resistance mechanisms are complex and emerging resistant clones are heterogenous. Further basic and clinical studies are required to establish the best therapeutic strategy for AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Kawashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Tima S, Okonogi S, Ampasavate C, Berkland C, Anuchapreeda S. FLT3-specific curcumin micelles enhance activity of curcumin on FLT3-ITD overexpressing MV4-11 leukemic cells. Drug Dev Ind Pharm 2019; 45:498-505. [PMID: 30572745 DOI: 10.1080/03639045.2018.1562462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin, a major active compound in the turmeric rhizome, has many biological properties, especially anti-leukemia activity. The overexpression of FMS-like tyrosine kinase 3 protein with internal tandem duplication (FLT3-ITD) mutation protein was related to the poor prognosis and disease progression of leukemia. In this study, the cytotoxicity and inhibitory effect of curcumin on cell cycle of FLT3-ITD overexpressing MV4-11 leukemic cells were evaluated. Moreover, curcumin polymeric micelles conjugated with FLT3-specific peptide (FLT3-Cur-micelles) were prepared using a film hydration method to increase curcumin solubility and the inhibitory effect on MV4-11 cells was evaluated. Cytotoxicity and cell cycle analysis were performed using an MTT assay and flow cytometry, respectively. Physical properties of FLT3-Cur-micelles, including particle size, size distribution, morphology, and entrapment efficiency (EE), were evaluated. Cellular uptake of the micelles on MV4-11 cells was determined by flow cytometry and fluorescence microscopy. FLT3-Cur-micelles were observed with size less than 50 nm and high EE of >75%. In addition, FLT3-Cur-micelles demonstrated excellent internalization and increased curcumin accumulation in leukemic cells when compared to free curcumin. Furthermore, FLT3-Cur-micelles exhibited a strong cytotoxic effect on MV4-11 cells with IC50 value of 1.1 µM, whereas the blank micelles showed no effect. Furthermore, FLT3-Cur-micelles showed no significant effect on normal human PBMCs with IC50 value >25 µM. In summary, FLT3-Cur-micelles are a promising nanocarrier system for enhancing anti-leukemic activity of curcumin and suitable for further preclinical studies.
Collapse
Affiliation(s)
- Singkome Tima
- a Department of Medical Technology, Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand.,e Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| | - Siriporn Okonogi
- b Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand
| | - Chadarat Ampasavate
- b Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Cory Berkland
- c Department of Pharmaceutical Chemistry, School of Pharmacy , University of Kansas , Kansas , USA
| | - Songyot Anuchapreeda
- a Department of Medical Technology, Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand.,e Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
9
|
He Y, Sun L, Xu Y, Fu L, Li Y, Bao X, Fu H, Xie C, Lou L. Combined inhibition of PI3Kδ and FLT3 signaling exerts synergistic antitumor activity and overcomes acquired drug resistance in FLT3-activated acute myeloid leukemia. Cancer Lett 2018; 420:49-59. [PMID: 29409989 DOI: 10.1016/j.canlet.2018.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
PI3Kδ and FLT3 are frequently activated in acute myeloid leukemia (AML) and have been implicated as potential therapeutic targets. In this report, we demonstrate that combined inhibition of PI3Kδ and FLT3 exerts synergistic antitumor activity in FLT3-activated AML. Synergistic antiproliferative effects were observed in FLT3-activated MV-4-11 and EOL-1 AML cell lines, but not in FLT3-independent RS4;11 and HEL cells, as demonstrated by both pharmacological inhibition and silencing of PI3Kδ/FLT3. Combined treatment with PI3Kδ and FLT3 inhibitors more effectively inhibited AKT and ERK phosphorylation, and induced apoptosis more efficiently than either agent alone. This synergistic effect was confirmed in hematopoietic 32D cells transfected with an FLT3-ITD mutant, but not FLT3 wild type. In in vivo FLT3-activated AML xenografts, a PI3Kδ inhibitor CAL101 combined with FLT3 inhibitor led to significantly enhanced antitumor activity compared with either agent alone, in association with simultaneous inhibition of AKT and ERK. Importantly, CAL101 combined with FLT3 inhibitors overcame acquired drug resistance in FLT3-ITD AML cells. Thus, combined inhibition of PI3Kδ and FLT3 may be a promising strategy in FLT3-activated AML, particularly for patients with FLT3-inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Ye He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Liping Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yongping Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xubin Bao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
10
|
Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells. Eur J Pharm Biopharm 2017; 114:57-68. [PMID: 28089916 DOI: 10.1016/j.ejpb.2016.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
Abstract
The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment.
Collapse
|
11
|
Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev 2015; 26:425-49. [PMID: 26003532 DOI: 10.1016/j.cytogfr.2015.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
Abstract
The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.
Collapse
Affiliation(s)
- Leandro H Gallo
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - April N Meyer
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| |
Collapse
|
12
|
Ben Lassoued A, Nivaggioni V, Gabert J. Minimal residual disease testing in hematologic malignancies and solid cancer. Expert Rev Mol Diagn 2015; 14:699-712. [PMID: 24938122 DOI: 10.1586/14737159.2014.927311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Minimal residual disease (MRD) assays are of a great value to assess treatment efficacy and may provide prognostic information. This is particularly relevant in the era of targeted therapy where the introduction of MRD monitoring has fundamentally transformed the way in which cancer patients are managed. While MRD guidelines are well-established for chronic myeloid leukemia, acute promyelocytic leukemia and acute lymphoblastic leukemia, areas for continuing development are available. High level of standardization and regular external quality control rounds and recommendations for data interpretation remain essential to improve MRD monitoring. In this review, we describe the different applications of MRD assays in most frequent hematologic malignancies and solid cancer and provide an overview of the strengths and potential weaknesses of each method.
Collapse
Affiliation(s)
- Amin Ben Lassoued
- Laboratoire de Biochimie et de Biologie Moléculaire, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital NORD, Marseille, France
| | | | | |
Collapse
|
13
|
Deeb KK, Smonskey MT, DeFedericis H, Deeb G, Sait SNJ, Wetzler M, Wang ES, Starostik P. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia. Leuk Res Rep 2014; 3:86-9. [PMID: 25379410 PMCID: PMC4220013 DOI: 10.1016/j.lrr.2013.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022] Open
Abstract
In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF) deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del) deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations.
Collapse
Affiliation(s)
- Kristin K Deeb
- Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | - Matthew T Smonskey
- Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | - HanChun DeFedericis
- Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | - Sheila N J Sait
- Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | - Meir Wetzler
- Leukemia Service, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Petr Starostik
- Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| |
Collapse
|
14
|
Yuan LL, Green A, David L, Dozier C, Récher C, Didier C, Tamburini J, Manenti S. Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia. Leuk Res 2014; 38:1342-9. [PMID: 25281057 DOI: 10.1016/j.leukres.2014.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/04/2014] [Accepted: 08/30/2014] [Indexed: 01/28/2023]
Abstract
CHK1 Ser/Thr kinase, a well characterized regulator of DNA damage response, is also involved in normal cell cycle progression. In this study, we investigate how CHK1 participates to proliferation of acute myeloid leukemia cells expressing the mutated FLT3-ITD tyrosine kinase receptor. Pharmacological inhibition of CHK1 as well as its shRNA mediated down regulation reduced the proliferation rate of FLT-ITD expressing leukemic cell lines in a cytostatic manner. Flow cytometry analysis revealed no accumulation in a specific phase of the cell cycle upon CHK1 inhibition. Accordingly, lentiviral-mediated CHK1 overexpression increased the proliferation rate of FLT3-ITD expressing cells, as judged by cell viability and [3H] thymidine incorporation experiments. By contrast, expression of a ser280 mutant did not, suggesting that phosphorylation of this residue is an important determinant of CHK1 proliferative function. Clonogenic growth of primary leukemic cells from patients in semi-solid medium was reduced upon CHK1 inhibition, confirming the data obtained with leukemic established cell lines. Surprisingly, 3 out of 4 CHK1 inhibitory compounds tested in this study were also potent inhibitors of the FLT3-ITD tyrosine kinase receptor. Altogether, these data identify CHK1 as a regulator of FLT3-ITD-positive leukemic cells proliferation, and they open interesting perspectives in terms of new therapeutic strategies for these pathologies.
Collapse
Affiliation(s)
- Ling Li Yuan
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Alexa Green
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Laure David
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christine Dozier
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christian Récher
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France; Service d'Hématologie, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | - Jérôme Tamburini
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U 1016, Paris, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, Inserm Unité Mixte de Recherche 1037, CNRS Equipe de Recherche labellisée 5294, Université de Toulouse, Centre Hospitalier Universitaire Purpan, Toulouse, France.
| |
Collapse
|
15
|
Yoshida A, Ookura M, Zokumasu K, Ueda T. Gö6976, a FLT3 kinase inhibitor, exerts potent cytotoxic activity against acute leukemia via inhibition of survivin and MCL-1. Biochem Pharmacol 2014; 90:16-24. [PMID: 24735609 DOI: 10.1016/j.bcp.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
Mutations of the FMS-like tyrosine kinase 3 (FLT3) have been reported in about a third of patients with acute myeloid leukemia (AML). The presence of FLT3 mutations confers a poor prognosis. Thus, pharmacological inhibitors of FLT3 are of therapeutic interest for AML. Gö6976 is an indolocarbazole with a similar structural backbone to staurosporine. In the present study, we demonstrated that Gö6976 displays a potent inhibitory activity against recombinant FLT3 using an in vitro kinase assay, with an IC50 value of 0.7nM. Gö6976 markedly inhibited the proliferation of human leukemia cells having FLT3-ITD such as MV4-11 and MOLM13. We also observed that Gö6976 showed minimal toxicity for human normal CD34(+) cells. Gö6976 suppressed the phosphorylation of FLT3 and downstream signaling molecules such as STAT3/5, Erk1/2, and Akt in MV4-11 and MOLM13 cells. Interestingly, induction of apoptosis by Gö6976 was associated with rapid and pronounced down-regulation of the anti-apoptotic protein survivin and MCL-1. Suppression of survivin protein expression by Gö6976 was due to the inhibition of transcription via the suppression of STAT3/5. On the other hand, Gö6976 induced proteasome-mediated degradation of MCL-1. Previously described FLT3 inhibitors such as PKC412 are bound by the human plasma protein, α1-acid glycoprotein, resulting in diminished inhibitory activity against FLT3. In contrast, we found that Gö6976 potently inhibited phosphorylation of FLT3 and exerted cytotoxicity in the presence of human serum. In conclusion, Gö6976 is a potent FLT3 inhibitor that displays a significant antiproliferative activity against leukemia cells with FLT3-ITD through the profound down-regulation of survivin and MCL-1.
Collapse
Affiliation(s)
- Akira Yoshida
- Department of Hematology and Oncology, Faculty of Medicine, University of Fukui, Shimoaizuki 23-3, Mastuoka, Eiheiji-Chou, Fukui 910-1193, Japan; Translational Research Center, University of Fukui, Japan.
| | - Miyuki Ookura
- Department of Hematology and Oncology, Faculty of Medicine, University of Fukui, Shimoaizuki 23-3, Mastuoka, Eiheiji-Chou, Fukui 910-1193, Japan
| | - Kouichi Zokumasu
- Department of Hematology and Oncology, Faculty of Medicine, University of Fukui, Shimoaizuki 23-3, Mastuoka, Eiheiji-Chou, Fukui 910-1193, Japan
| | - Takanori Ueda
- Department of Hematology and Oncology, Faculty of Medicine, University of Fukui, Shimoaizuki 23-3, Mastuoka, Eiheiji-Chou, Fukui 910-1193, Japan
| |
Collapse
|
16
|
Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia 2013; 28:293-301. [PMID: 23748345 DOI: 10.1038/leu.2013.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
Phosphorylation by Akt on Ser 280 was reported to induce cytoplasmic retention and inactivation of CHK1 with consequent genetic instability in PTEN-/- cells. In acute myeloid leukemia cells carrying the FLT3-internal tandem duplication (ITD) mutation, we observed high rates of FLT3-ITD-dependent CHK1 Ser 280 phosphorylation. Pharmacological inhibition and RNA interference identified Pim1/2, not Akt, as effectors of this phosphorylation. Pim1 catalyzed Ser 280 phosphorylation in vitro and ectopic expression of Pim1/2-induced CHK1 phosphorylation. Ser 280 phosphorylation did not modify CHK1 localization, but facilitated its cell cycle and resistance functions in leukemic cells. FLT3, PIM or CHK1 inhibitors synergized with DNA-damaging agents to induce apoptosis, allowing cells to bypass the etoposide-induced G2/M arrest. Consistently, etoposide-induced CHK1-dependent phosphorylations of CDC25C on Ser 216 and histone H3 on Thr11 were decreased upon FLT3 inhibition. Accordingly, ectopic expression of CHK1 improved the resistance of FLT3-ITD cells and maintained histone H3 phosphorylation in response to DNA damage, whereas expression of unphosphorylated Ser 280Ala mutant did not. Finally, FLT3- and Pim-dependent phosphorylation of CHK1 on Ser 280 was confirmed in primary blasts from patients. These results identify a new pathway involved in the resistance of FLT3-ITD leukemic cells to genotoxic agents, and they constitute the first report of CHK1 Ser 280 regulation in myeloid malignancies.
Collapse
|
17
|
Naoe T, Kiyoi H. Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol 2013; 97:165-74. [PMID: 23359299 DOI: 10.1007/s12185-013-1257-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Ten years ago, gene mutations found in acute myeloid leukemia (AML) were conceptually grouped into class I mutation, which causes constitutive activation of intracellular signals that contribute to the growth and survival, and class II mutation, which blocks differentiation and/or enhance self-renewal by altered transcription factors. A cooperative model between two classes of mutations has been suggested by murine experiments and partly supported by epidemiological findings. In the last 5 years, comprehensive genomic analysis proceeded to find new gene mutations, which are found in the epigenome-associated enzymes and the molecules never noticed so far. These new mutations apparently increase the complexity and heterogeneity of AML. Although a long list of gene mutations might have been compiled, the entire picture of molecular pathogenesis in AML remains to be elucidated because gene rearrangement, gene copy number, DNA methylation and expression profiles are not fully studied in conjunction with gene mutations. Comprehensive genome research will deepen the understanding of AML to promote the development of new classification and treatment. This review focuses on gene mutations that were recently discovered by genome sequencing.
Collapse
Affiliation(s)
- Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
18
|
Parker LJ, Watanabe H, Tsuganezawa K, Tomabechi Y, Handa N, Shirouzu M, Yuki H, Honma T, Ogawa N, Nagano T, Yokoyama S, Tanaka A. Flexibility of the P-loop of Pim-1 kinase: observation of a novel conformation induced by interaction with an inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:860-6. [PMID: 22869110 PMCID: PMC3412761 DOI: 10.1107/s1744309112027108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/15/2012] [Indexed: 12/27/2022]
Abstract
The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the β3 strand located above the binding site, is not usually observed in Pim-1 structures.
Collapse
Affiliation(s)
- Lorien J. Parker
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hisami Watanabe
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Tsuganezawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriko Handa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Teruki Honma
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Tetsuo Nagano
- Open Innovation Center for Drug Discovery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiko Tanaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Open Innovation Center for Drug Discovery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Kühnl A, Grimwade D. Molecular markers in acute myeloid leukaemia. Int J Hematol 2012; 96:153-63. [PMID: 22791509 DOI: 10.1007/s12185-012-1123-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
An increasing number of cytogenetic and molecular genetic aberrations have been identified in acute myeloid leukaemia (AML), highlighting the biological heterogeneity of the disease. Moreover, the characterisation of specific molecular abnormalities provides the basis for targeted therapies, such as all trans retinoic acid (ATRA) and arsenic trioxide treatment in acute promyelocytic leukaemia or tyrosine kinase inhibitors in AML with FLT3 mutations. Several cytogenetic and molecular genetic changes have been shown to be prognostically relevant and have been acknowledged in the latest WHO classification of AML as separate entities. A detailed marker assessment at diagnosis is crucial for risk-stratification of AML patients, allowing the identification of those at high risk of relapse, who may benefit from early allogeneic stem cell transplantation. Finally, molecular markers are important for the detection of minimal residual disease after initial therapy and during long-term follow-up, which enables a more tailored treatment approach for individual AML patients.
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| | | |
Collapse
|
20
|
Seiser EL, Thomas R, Richards KL, Kelley MK, Moore P, Suter SE, Breen M. Reading between the lines: molecular characterization of five widely used canine lymphoid tumour cell lines. Vet Comp Oncol 2011; 11:30-50. [PMID: 22236332 DOI: 10.1111/j.1476-5829.2011.00299.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular characterization of tumour cell lines is increasingly regarded as a prerequisite for defining their validity as models of in vivo neoplasia. We present the first comprehensive catalogue of genomic and transcriptional characteristics of five widely used canine lymphoid tumour cell lines. High-resolution microarray-based comparative genomic hybridization defined their unique profiles of genomic DNA copy number imbalance. Multicolour fluorescence in situ hybridization identified aberrant gains of MYC, KIT and FLT3 and deletions of PTEN and CDKN2 in individual cell lines, and also revealed examples of extensive structural chromosome reorganization. Gene expression profiling and RT-PCR analyses defined the relationship between genomic imbalance and transcriptional dysregulation in each cell line, clarifying their relevance as models of discrete functional pathways with biological and therapeutic significance. In combination, these data provide an extensive resource of molecular data for directing the appropriate use of these cell lines as tools for studying canine lymphoid neoplasia.
Collapse
Affiliation(s)
- E L Seiser
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ravandi F, Patel K, Luthra R, Faderl S, Konopleva M, Kadia T, Brandt M, Pierce S, Kornblau S, Andreeff M, Wang X, Garcia-Manero G, Cortes J, Kantarjian H. Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer 2011; 118:2665-73. [PMID: 22020636 DOI: 10.1002/cncr.26580] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/07/2011] [Accepted: 08/02/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND IDH1 and IDH2 gene mutations are novel, recurring molecular aberrations among patients with normal karyotype acute myeloid leukemia (AML). METHODS Among 358 patients with AML treated on 4 protocols using high-dose ara-C plus idarubicin induction, pretreatment samples were available for 170 (median age 53 years, [range, 17-73]; 96% ≤65) and were evaluated for IDH1R132, IDH2R172, and IDH2R140 mutations or the codon 105 single nucleotide polymorphism (SNP) in IDH1. RESULTS IDH1 and IDH2 mutations were present in 12 (7%) and 24 (14%) of patients, and IDH1 G105 SNP in 24 (14%). Overall, 52 (30%) patients had IDH gene alterations. There was no association with complete response (CR), remission duration, overall survival, and event-free survival and any of the IDH alterations, and no association with a higher CR rate or survival with the 4 regimens for the 52 patients with aberrant IDH. Among the patients with diploid karyotype and NPM1(mut) FLT3(WT) genotype, those with IDH1 or IDH2 mutations had an inferior outcome. CONCLUSIONS IDH aberrations and IDH1 codon 105 SNP occur in about 30% of younger patients with AML, mostly with diploid karyotype. Using high-dose ara-C-based induction regimens, we did not detect an association with outcome for any of the aberrations.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leow S, Kham SKY, Ariffin H, Quah TC, Yeoh AEJ. FLT3 mutation and expression did not adversely affect clinical outcome of childhood acute leukaemia: a study of 531 Southeast Asian children by the Ma-Spore study group. Hematol Oncol 2011; 29:211-9. [PMID: 21387358 DOI: 10.1002/hon.987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 11/09/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is critical for normal haematopoiesis and have been reported to be expressed in the majority of acute myeloid and lymphoid malignancies. We correlated the impact of FLT3 mutations and its expression with age, WHO 2008 classification and treatment outcome in 531 childhood acute leukaemias. Of 150 acute myeloid leukaemia (AMLs), 18 (12%) harboured FLT3-ITD while nine (6%) had FLT3-TKD. FLT3-ITD and -TKD were rare in acute megakaryoblastic leukaemia (AMKL; FLT3-ITD 0/26, FLT3-TKD 1/26) and children below 3 years (n = 2/48). Acute promyelocytic leukaemia (APL) with t(15;17);PML-RARα (n = 7/18; 39%) harboured the highest frequency of FLT3 mutations, followed by myelomonocytic (n = 4/18; 22%) and AML with t(8;21);RUNX1-RUNX1T1 (n = 2/21; 9%). FLT3 expression levels were also lowest in AMKL, both in Down's and non-Down's (p = 0.002) followed by patients <3 years (p = 0.001). The rarity of FLT3 mutations and expression levels in AMKL were independent of age. Conversely, only 2% of childhood acute lymphoblastic leukaemia (ALL) harboured FLT3 mutations (ITD = 1/381; TKD = 6/381). FLT3 was highly expressed in hyperdiploid ALL (p < 0.001). Of the 121 AMLs with clinical history, there were no significant differences in 4-year event-free survival (EFS) (46% vs. 38%; p = 0.46) and overall-survival (OS) (55% vs. 43%; p = 0.30) between FLT3-wildtype and ITD+ patients. Similarly, FLT3 expression levels did not influence survival in AML in both the good risk and non-good risk subgroups. FLT3 does not appear to be involved in the pathogenesis of AMKL, both in Down's and non-Down's. Therapeutic targets using FLT3 inhibitors may not be useful in AMKL and in young children with AML.
Collapse
Affiliation(s)
- Shuangjie Leow
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | | | | |
Collapse
|
23
|
Xiong Y, Song D, Cai Y, Yu W, Yeung YG, Stanley ER. A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. J Biol Chem 2010; 286:952-60. [PMID: 21041311 DOI: 10.1074/jbc.m110.166702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Beitinjaneh A, Jang S, Roukoz H, Majhail NS. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res 2010; 34:831-6. [PMID: 20096459 DOI: 10.1016/j.leukres.2010.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/30/2009] [Accepted: 01/01/2010] [Indexed: 02/07/2023]
Abstract
The fms-like tyrosine kinase 3 (FLT3) gene aberrations, internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations, are frequent in acute promyelocytic leukemia (APL). To evaluate their prognostic significance, we performed a systematic review and meta-analysis. Eleven studies covering a total of 1063 subjects were included in this review. Incidence of ITD and TKD mutations was 12-38% and 2-20%, respectively. In 9 of 11 studies, ITD was associated with high WBC count at the time of diagnosis, which is a known prognostic indicator in APL. Patients with ITD had inferior 3-year overall survival compared to patients without ITD (risk ratio 1.42, 95% CI: 1.04-1.95). Similarly, ITD was also associated with adverse 3-year disease-free survival (risk ratio 1.48, 95% CI: 1.02-2.15). There were only two studies that evaluated the association of TKD mutation in APL; both showed a trend towards worse survival in patients with mutated TKD. In conclusion, FLT3 ITD is associated with high WBC at diagnosis in patients with APL. Although the available literature is limited to observational studies, our systematic review suggests that FLT3 mutations, especially ITD, can adversely affect overall survival and disease-free survival in APL.
Collapse
Affiliation(s)
- Amer Beitinjaneh
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
25
|
Chen W, Konoplev S, Medeiros LJ, Koeppen H, Leventaki V, Vadhan-Raj S, Jones D, Kantarjian HM, Falini B, Bueso-Ramos CE. Cuplike nuclei (prominent nuclear invaginations) in acute myeloid leukemia are highly associated with FLT3 internal tandem duplication and NPM1 mutation. Cancer 2009; 115:5481-9. [PMID: 19672946 PMCID: PMC3378048 DOI: 10.1002/cncr.24610] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND A small subset of patients with acute myeloid leukemia (AML) have cuplike nuclei. Other investigators have demonstrated that these neoplasms have distinctive clinicopathologic and molecular features. METHODS The authors searched for patients who had AML with cuplike nuclei at their institution over a 10-year interval. A strict definition for cuplike nuclei was used: >or=10% blasts with nuclear invaginations in >or=25% of the nuclear area. The relevant data were reviewed, and the results were compared with a control group of patients who had AML without cuplike nuclei. RESULTS In total, 22 patients who had AML with cuplike nuclei were identified and were classified as AML without maturation (French-American-British classification M1) (AML M1). Compared with the control group (AML M1), patients who had AML with cuplike nuclei were associated significantly with fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) (86% vs 38%, respectively; P = .002); nucleophosmin 1 (NPM1) mutations (86% vs 19%; P < .0001); both mutations (77% vs 14%; P < .0001); normal karyotype (86% vs 40%; P = .003); bone marrow blast count (90% vs 84%; P = .016); myeloperoxidase positivity (95% vs 30% blasts; P = .001); higher D-dimer levels (>5000 ng/mL vs 569 ng/mL; P = .001); and the absence of CD7 (91% vs 52%; P = .007), CD34 (82% vs 5%; P < .0001), and human leukocyte antigen, D-related (59% vs 10%; P = .001). There were no differences in age, sex, or peripheral blood counts. The positive predictive value of recognizing AML with cuplike nuclei for FLT3-ITD, NPM1, and both mutations was 81%, 86%, and 77%, respectively. CONCLUSIONS Cuplike nuclei in AML were highly associated with the presence of NPM1 and FLT3-ITD mutations and with several clinicopathologic and immunophenotypic features. Recognition of the distinctive morphologic features of AML with cuplike nuclei may be helpful in streamlining the workup of these neoplasms.
Collapse
Affiliation(s)
- Weina Chen
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Texas,Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hartmut Koeppen
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Vasiliki Leventaki
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Saroj Vadhan-Raj
- Department of Cytokine and Supportive Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Dan Jones
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Bang SM, Ahn JY, Park J, Park SH, Park J, Cho EK, Shin DB, Lee JH, Yoo SJ, Jeon IS, Kim YK, Kim HJ, Kim HN, Lee IK, Kang HJ, Shin HY, Ahn HS. Low frequency and variability of FLT3 mutations in Korean patients with acute myeloid leukemia. J Korean Med Sci 2008; 23:833-7. [PMID: 18955790 PMCID: PMC2580007 DOI: 10.3346/jkms.2008.23.5.833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 02/14/2008] [Indexed: 11/20/2022] Open
Abstract
FLT3 mutations are common genetic changes, and are reported to have prognostic significance in acute myeloid leukemia (AML). The FLT3 internal tandem duplication (ITD) and the D835 activating mutation in the tyrosine kinase domain (TKD) were analyzed by polymerase chain reaction (PCR) in the genomic DNA of Korean patients with AML at diagnosis and during follow-up. There were 226 patients with AML enrolled between March 1996 and August 2005. The incidence of ITD and TKD at diagnosis was 13% (29/226) and 3% (6/226). When compared to Western and other Asian patients with AML, Korean patients had a lower frequency by about two-thirds of ITD and TKD. Among the non-M3 cases (N=203), the patients with an ITD had a significantly shorter event-free survival when compared with those without an ITD (p=0.0079). Among 54 relapsed patients, 9 patients had the FLT3 ITD at diagnosis. Six patients demonstrated a reappearance of the ITD and 3 patients remained negative at relapse. One patient, among 45 patients who relapsed, had a negative baseline ITD but acquired a de novo ITD at relapse. There were 101 samples from 93 patients in remission; they were all negative for an ITD. Among 34 patients who failed to achieve a remission, five patients had a persistent ITD and one patient had a de novo ITD. These results support the concept of resistance of FLT3 ITD leukemic clones to chemotherapy. Therefore, effective therapy with FLT3 targeting agents may improve the prognosis of non-M3 AML patients with the FLT3 mutation.
Collapse
Affiliation(s)
- Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Yeal Ahn
- Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Jiyoon Park
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Se Hoon Park
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Jinny Park
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Eun Kyung Cho
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Dong Bok Shin
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Jae Hoon Lee
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Soo Jin Yoo
- Department of Pediatrics, Gachon University Gil Hospital, Incheon, Korea
| | - In Sang Jeon
- Department of Laboratory Medicine, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyeoung Joon Kim
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Nam Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Il-Kwon Lee
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Young Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Seop Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Pinheiro RF, de Sá Moreira E, Silva MRR, Alberto FL, Chauffaille MDLLF. FLT3 internal tandem duplication during myelodysplastic syndrome follow-up: a marker of transformation to acute myeloid leukemia. ACTA ACUST UNITED AC 2008; 183:89-93. [PMID: 18503825 DOI: 10.1016/j.cancergencyto.2008.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/19/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder characterized by ineffective hematopoiesis and risk for evolving to acute leukemia. Some molecular abnormalities related to acute myeloid leukemia (AML) transformation have been reported, such as FLT3 (FMS-like tyrosine kinase 3) mutations. FLT3, a member of the class 3 receptor tyrosine kinase family, mediates stem cell proliferation and differentiation, and its mutations, internal tandem duplication (ITD) and Asp835, have been reported in rare MDS patients. We studied FLT3 ITD, prospectively, in 50 MDS patients at diagnosis, at 6 and 12 months follow-up, and at any other time-point if AML transformation was detected. FLT3 ITD was not observed at diagnosis, but during follow-up the mutation was present in 2 of 50 patients (4%). Of these, one case exhibited FLT3 ITD at the end of the 6 months of follow-up in approximately 8% of bone marrow cells; this case evolved into AML at 8 months, at which time FLT3 ITD was present in approximately 85% of bone marrow cells. The other case exhibited FLT3 ITD in 68% of bone marrow cells at 7 months, precisely at the time of AML transformation. Although rare in MDS, FLT3 ITD is associated with a high probability of evolution to AML.
Collapse
Affiliation(s)
- Ronald Feitosa Pinheiro
- Section of Hematology and Hemotherapy, Federal University of Sao Paulo-UNIFESP-EPM, Rua Botucatu,740, 3 degree andar, CEP 04023-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Tiesmeier J, Müller-Tidow C, Westermann A, Czwalinna A, Hoffmann M, Krauter J, Heil G, Ganser A, Serve H, Verbeek W. Evolution of FLT3-ITD and D835 activating point mutations in relapsing acute myeloid leukemia and response to salvage therapy. Leuk Res 2007; 28:1069-74. [PMID: 15289019 DOI: 10.1016/j.leukres.2004.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2003] [Accepted: 02/01/2004] [Indexed: 11/28/2022]
Abstract
Internal tandem duplications (ITDs) of the juxtamembrane region of the FLT3 tyrosine kinase receptor are the most frequent genetic alterations in acute myeloid leukemia (AML). The presence of this mutation has been recognized as an independent poor prognostic factor. In this study, we compared the FLT3 mutational status between diagnosis and subsequent relapses in 31 patients with AML. At diagnosis, seven patients were identified to contain FLT3-ITD mutations and one patient to harbor the D835 mutation. Five patients remained FLT3-ITD positive throughout the disease course (+/+). Three patients lost the FLT3 gene mutation at first (one FLT3-ITD, one D835 mutation), or second relapse (one FLT3-ITD) (+/-). One additional patient lost a small FLT3-ITD positive clone at relapse and at the same time gained an apparently unrelated FLT3-ITD positive clone. One patient without FLT3 mutation at diagnosis relapsed with an FLT3-ITD mutation (-/+). A shorter median duration of first remission (6 months versus 11.5 months) and a higher relapse rate after salvage therapy (e.g. allogeneic peripheral blood stem cell transplantation) resulted in a lower leukemia-free survival in the FLT3 mutated group (11% versus 31%). The loss of a clone with a mutation in the FLT3 gene at relapse did not improve the prognosis.
Collapse
Affiliation(s)
- Jens Tiesmeier
- Department of Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str 1, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pinheiro RF, Moreira EDS, Silva MRR, Greggio B, Alberto FL, Chauffaille MDLLF. FLT3 mutation and AML/ETO in a case of Myelodysplastic syndrome in transformation corroborates the two hit model of leukemogenesis. Leuk Res 2007; 31:1015-8. [PMID: 17079011 DOI: 10.1016/j.leukres.2006.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/16/2006] [Accepted: 09/18/2006] [Indexed: 11/21/2022]
Abstract
The aim of this report is to present a case of Myelodysplastic syndrome (MDS) who presented, during AML transformation, a step-wise genetic progression that corroborates the two hit model of leukemogenesis. A RCDM-RS (WHO)/RARS (FAB) patient with normal karyotype at diagnosis, evolved into AML after six months of follow up. At transformation, AML/ETO fusion was detected, although marrow blast cells were not increased until 21 days later, when FLT3-ITD was also demonstrated pointing out that the overgrowth of the FLT3/ITD clone was concomitant with the outburst of marrow blasts. These findings corroborates the two hit model of leukemogenesis in which one class of mutations (Class I) (FLT3/ITD) confers a proliferative or survival advantage to cells, and a second class of mutations (Class II) (AML/ETO) interferes with hematopoietic differentiation.
Collapse
Affiliation(s)
- Ronald Feitosa Pinheiro
- Disciplina de Hematologia e Hemoterapia--Universidade Federal de São Paulo-UNIFESP-EPM, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Kiyoi H, Naoe T. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol 2006; 83:301-8. [PMID: 16757428 DOI: 10.1532/ijh97.06071] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overexpression and activating mutations of receptor tyrosine kinases (RTKs) are known to be involved in the pathophysiology of several kinds of cancer cells. FMS-like receptor tyrosine kinase 3 (FLT3), together with KIT, FMS, and platelet-derived growth factor receptor, is a class III RTK. FLT3 mutations were first reported as internal tandem duplication (FLT3/ITD) of the juxtamembrane domain-coding sequence; subsequently, a missense point mutation at the D835 residue and point mutations, deletions, and insertions in the codons surrounding D835 within a FLT3 tyrosine kinase domain (FLT3/KDMs) have been found. FLT3 mutations are the most frequent genetic alterations so far reported in acute myeloid leukemia and are involved in the signaling pathway of autonomous proliferation and differentiation block in leukemia cells. Several large-scale studies have confirmed that FLT3/ITD is strongly associated with leukocytosis and a poor prognosis. Therefore, routine screening for FLT3 mutations is recommended to stratify patients into distinct risk groups. However, because high-dose chemotherapy and stem cell transplantation cannot overcome the adverse effects of FLT3 mutations, the development of FLT3 kinase inhibitors is expected to produce a more efficacious therapeutic strategy for leukemia therapy.
Collapse
MESH Headings
- Acute Disease
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Proliferation/drug effects
- Drug Design
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukocytosis/enzymology
- Leukocytosis/genetics
- Leukocytosis/therapy
- Mutation
- Prognosis
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/therapeutic use
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Risk Factors
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Stem Cell Transplantation
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
32
|
Liu YF, Zhu YM, Shen SH, Shen ZX, Li JM, Chen SJ, Chen Z, Jiong HU. Molecular response in acute promyelocytic leukemia: a direct comparison of regular and real-time RT-PCR. Leukemia 2006; 20:1393-9. [PMID: 16728984 DOI: 10.1038/sj.leu.2404262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of molecular response is important for the diagnosis and monitoring of minimal residual disease in patients with acute promyelocytic leukemia (APL). In this study, we analyzed the molecular response by regular reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR in 31 newly diagnosed patients. The real-time RT-PCR results are reported as normalized DoseN and log-reduction (3.0-4.9 log-reduction as minor and > or =5.0 log-reduction as major molecular response). After induction therapy and completion of consolidation, minor molecular response was documented in 35.5 and 96.8% patients, respectively, which was equivalent to the regular RT-PCR (22.6 and 96.8%), whereas the major molecular response rate was significantly lower (12.9 and 90.3%, respectively). All patients achieved major molecular response during and after maintenance therapy. During the follow-up study, loss of major molecular response was observed in two patients, which was associated with subsequent loss of minor molecular response, positive RT-PCR and then documentation of central nervous system leukemia or clinical relapse in 3-6 months. For summary, we demonstrated that the real-time RT-PCR is potentially superior to regular RT-PCR in evaluation of molecular response in APL patients and that reporting real-time RT-PCR data by log-reduction is feasible and clinically relevant.
Collapse
Affiliation(s)
- Y-F Liu
- Department of Hematology, State key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, JiaoTong University School of Medicine, JiaoTong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen W, Jones D, Medeiros LJ, Luthra R, Lin P. Acute myeloid leukaemia with FLT3 gene mutations of both internal tandem duplication and point mutation type. Br J Haematol 2005; 130:726-8. [PMID: 16115128 DOI: 10.1111/j.1365-2141.2005.05666.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FLT3 gene mutations, either internal tandem duplication or point mutation type, are common in acute myeloid leukaemia (AML). We describe 21 AML cases with both types of gene mutations, so-called dual mutations, representing approximately 1% of all cases. Most newly diagnosed AML with FLT3 dual mutations had monocytic differentiation and a normal karyotype. Over the disease course, changes in FLT3 mutation status were seen in 89% of cases, and were associated with cytogenetic changes. We conclude that FLT3 dual mutations occur rarely in AML, and appear to be related to clonal evolution.
Collapse
Affiliation(s)
- Weina Chen
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
FLT3 is a class III receptor tyrosine kinase together with KIT, FMS and PDGFR. FLT3 mutations were first reported as internal tandem duplication (FLT3/ITD) of the juxtamembrane domain-coding sequence, and subsequently as a missense mutation of D835 (FLT3/KDM) within a kinase domain. Furthermore, point mutations, deletions, and insertions in the codons surrounding D835 have also been found. FLT3/ITD and FLT3/KDM occur in 15% to 35% and 5% to 10%, respectively, of patients with AML. FLT3 mutations are, therefore, the most frequent genetic alterations so far reported in AML. Several large-scale studies have confirmed that FLT3/ITD is strongly associated with leukocytosis and a poor prognosis. Although the clinical significance of FLT3/KDM is controversial, the meta-analysis suggests its adverse effect on the outcome. FLT3/ITD is far less common in patients with ALL, whereas FLT3/KDM is recurrently found in patients with ALL, especially in those harboring an MLL gene rearrangement or hyperdiploidy. The overexpression of FLT3 transcripts has been demonstrated in a pro-portion of the AML patients without FLT3 mutations, which are associated with a poor prognosis for overall survival. Routine screening of FLT3 mutations is recommended to stratify the patients into distinct risk groups, while the optimal treatment strategy for patients with FLT3 mutations should be further evaluated.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
35
|
Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19:1345-9. [PMID: 15959528 DOI: 10.1038/sj.leu.2403838] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two distinct forms of fms-like tyrosine kinase (FLT3) gene aberrations, internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations, have been recognized in a substantial proportion of patients with acute myeloid leukemia (AML). To investigate their prognostic significance, we performed a meta-analysis of the four published studies that provided survival information according to the FLT3 status: ITD, TKD mutation, and wild type. The summary hazard ratios for disease-free survival (DFS) were 1.88 (95% confidence interval (CI) 1.58-2.23; P<0.001) for FLT3 mutations, 1.86 (95% CI: 1.52-2.29; P<0.001) for ITD, and 1.90 (95% CI: 1.40-2.60; P<0.001) for TKD mutation. The corresponding ratios for overall survival were 1.61 (95% CI: 1.37-1.89; P<0.001), 1.68 (95% CI: 1.39-2.03; P<0.001), and 1.37 (95% CI: 0.94-2.01; P=0.104). Neither white blood cell count at diagnosis nor cytogenetic risk category was a significant source of heterogeneity. These findings indicate that FLT3 mutations have an adverse effect on the outcome for AML, and that the negative impact of TKD mutation seems comparable to that of ITD with regard to DFS. Although it should be borne in mind that this meta-analysis was based on data abstracted from observational studies, these results may justify the risk-adapted therapeutic strategies for AML according to the FLT3 status.
Collapse
Affiliation(s)
- M Yanada
- Department of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
36
|
Choi Y, Kim HJ, Park BH, Min WS, Kim CC. Novel mutations in the FLT3 gene in adult patients with refractory acute myeloid leukemia. Leukemia 2005; 19:141-3. [PMID: 15510198 DOI: 10.1038/sj.leu.2403580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Ciolli S, Vannucchi AM, Leoni F, Nozzoli C, Longo G, Salati A, Pancrazzi A, Bianchi L, Gigli F, Bosi A. Internal tandem duplications of Flt3 gene (Flt3/ITD) predicts a poor post-remission outcome in adult patients with acute non-promyelocytic leukemia. Leuk Lymphoma 2004; 45:73-8. [PMID: 15061200 DOI: 10.1080/1042819031000151851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite progress in AML therapy, most patients eventually relapse, even the ones with normal or favorable karyotype. Since survival is poor once relapse occurs, new genetic tools above karyotype at diagnosis are needed to predict leukemia free survival. Recently, Flt3/ITD has been reported as an independent marker for clinical outcome in most studies concerning adult AML patients. To assess the prognostic relevance of activating mutations of Flt3, pretreatment samples of 100 not-M3 AML patients, all of them subjected to an intensive chemotherapy regimen, were analyzed for Flt3/ITD; 25/100 patients had one or more Flt3-ITD. Flt3/ITD patients had higher WBC count (P = 0.005), a lower incidence of a preceding MDS (P = 0.004) and most of them had a normal karyotype. Flt3/ITD had no impact on CR achievement while karyotype remained the most powerful prognostic factor (HR 2.8 95% CI 1.2 6.3). However, post-remission outcome was significantly worsened by the presence of Flt3/ITD. Median RFS of the Flt3/ITD patients was 5 vs. 27 months compared to the patients with wild-type Flt3 (P = 0.0002); moreover, Flt3/ITD patients had a significantly poorer post-remission survival (11 vs. 38 months, P = 0.01). On multivariate analysis, the presence of Flt3-ITD significantly affected relapse free survival and post-remission survival (HR 3.1 and 2.1, respectively). Thus, post-remission outcome highly depends on Flt3 status. Flt3 mutations identify patients at high risk of relapse, who should prospectively receive, according to age, either more aggressive or alternative therapeutic approaches.
Collapse
Affiliation(s)
- S Ciolli
- Department of Hematology, University and Hospital Careggi, 50139 Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van de Geijn GJM, Aarts LHJ, Erkeland SJ, Prasher JM, Touw IP. Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol 2004; 149:53-71. [PMID: 12687405 DOI: 10.1007/s10254-003-0014-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoiesis, the process of blood cell formation, is orchestrated by cytokines and growth factors that stimulate the expansion of different progenitor cell subsets and regulate their survival and differentiation into mature blood cells. Granulocyte colony-stimulating factor (G-CSF) is the major hematopoietic growth factor involved in the control of neutrophil development. G-CSF is now applied on a routine basis in the clinic for treatment of congenital and acquired neutropenias. G-CSF activates a receptor of the hematopoietin receptor superfamily, the G-CSF receptor (G-CSF-R), which subsequently triggers multiple signaling mechanisms. Here we review how these mechanisms contribute to the specific responses of hematopoietic cells to G-CSF and how perturbations in the function of the G-CSF-R are implicated in various types of myeloid disease.
Collapse
Affiliation(s)
- G J M van de Geijn
- Department of Hematology, Erasmus University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Hirose Y, Kudo K, Kiyoi H, Hayashi Y, Naoe T, Kojima S. Comprehensive analysis of gene alterations in acute megakaryoblastic leukemia of Down's syndrome. Leukemia 2003; 17:2250-2. [PMID: 12931214 DOI: 10.1038/sj.leu.2403121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|