1
|
Karatrasoglou EA, Dimou M, Piperidou A, Lakiotaki E, Korkolopoulou P, Vassilakopoulos TP. The Role of mTOR in B Cell Lymphoid Malignancies: Biologic and Therapeutic Aspects. Int J Mol Sci 2023; 24:14110. [PMID: 37762410 PMCID: PMC10531792 DOI: 10.3390/ijms241814110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-Hodgkin lymphoma's (NHL) incidence is rising over time, and B cell lymphomas comprise the majority of lymphomas. The phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue 1 (Akt)/mammalian target of the rapamycin (mTOR) signaling pathway plays a critical role in a variety of cellular processes, such as cell proliferation and survival. Its role in lymphomagenesis is confirmed in many different types of B cell lymphomas. This review is mainly focused on the PI3K/v-akt/mTOR pathway-related oncogenic mechanisms in B cell NHLs with an emphasis on common B cell lymphoma types [diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL)]. Furthermore, it summarizes the literature regarding the clinical applications of the mTOR inhibitors temsirolimus and everolimus in B cell NHLs, which have been tested in a range of clinical trials enrolling patients with B cell malignancies, either as monotherapy or in combination with other agents or regimens.
Collapse
Affiliation(s)
- Eleni A. Karatrasoglou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Maria Dimou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Alexia Piperidou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Eleftheria Lakiotaki
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| |
Collapse
|
2
|
Xie M, Yang A, Ma J, Wu M, Xu H, Wu K, Jin Y, Xie Y. Akt2 mediates glucocorticoid resistance in lymphoid malignancies through FoxO3a/Bim axis and serves as a direct target for resistance reversal. Cell Death Dis 2019; 9:1013. [PMID: 30598523 PMCID: PMC6312545 DOI: 10.1038/s41419-018-1043-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/22/2023]
Abstract
Glucocorticoids (GCs) are widely used drugs in the treatment of lymphoid malignancies; resistance of GCs in lymphocytes confers poor prognosis and the mechanisms are poorly understood. Here, we found T-acute lymphoblastic leukemia (T-ALL) cells acquire resistance to dexamethasone (DEX)-mediated killing through abnormal activation of Akt, resulting in inhibition of the FoxO3a/Bim pathway. The resistant state was reported to be associated with increased glycolysis, NOTCH1 activating mutations and activated PI3K/ serum GS regulated kinases (SGK) pathway. Use of aforementioned pathway inhibitors blocked FoxO3a-phosphorylation and partially improved DEX-mediated killing of GC-resistant T-ALL cells, further revealing the essential role of the FoxO3a/Bim pathway in the development of GC resistance. Inhibition of Akt is most effective at restoring sensitivity to DEX of GC-resistant lymphocytes in vitro and in vivo, but shows significant hepatotoxicity in vivo. A significantly elevated expression of Akt2 not Akt1 in intrinsically, secondarily GC-resistant lymphocytes and relapsed/refractory ALL patients implicates a more specific target for GC resistance. Mechanistically, Akt2 has a stronger binding capacity with FoxO3a compared to Akt1, and acts as a direct and major negative regulator of FoxO3a activity driving GC resistance. Pharmacologic inhibition of Akt2 more effectively restores sensitivity to GCs than inhibition of Akt1 in vitro, shows higher synergistic effect acting with DEX, and reverses GC resistance in GC-resistant T- or B- lymphoid tumors in vivo with reduced liver toxicity. In summary, these results suggest that Akt2 might serve as a more direct and specific kinase mediating GC resistance through FoxO3a/Bim signaling pathway, and Akt2 inhibition may be explored as a promising target for treating GC-resistant hematopoietic malignancies.
Collapse
Affiliation(s)
- Mixue Xie
- Senior Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Apeng Yang
- Department of Hematology & Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Jiexian Ma
- Department of Hematology & Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Min Wu
- Department of Hematology & Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Hongyue Xu
- Department of Hematology & Oncology, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Kefei Wu
- Department of Hematology & Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Youxin Jin
- The School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yanhui Xie
- Department of Hematology & Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Abbas SH, Abd El-Hafeez AA, Shoman ME, Montano MM, Hassan HA. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg Chem 2018; 82:360-377. [PMID: 30428415 DOI: 10.1016/j.bioorg.2018.10.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91-5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52-473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3β in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| | - Mai E Shoman
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heba A Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
4
|
Yu D, Zhang Y, Chen G, Xie Y, Xu Z, Chang S, Hu L, Li B, Bu W, Wang Y, Xiao W, Sun X, Chang G, Gao L, Qiang S, Wu X, Zhu W, Shi J. Targeting the PI3K/Akt/mTOR signaling pathway by pterostilbene attenuates mantle cell lymphoma progression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:782-792. [PMID: 29961897 DOI: 10.1093/abbs/gmy070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive and mostly incurable B-cell malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve MCL clinical outcomes. In this study, MCL cell lines were treated with pterostilbene (PTE), a non-toxic natural phenolic compound primarily found in blueberries. The antitumor activity of PTE was examined by using the Cell Counting Kit-8, apoptosis assays, cell cycle analysis, JC-1 mitochondrial membrane potential assay, western blot analysis, and tumor xenograft models. PTE treatment induced a dose-dependent inhibition of cell proliferation, including the induction of cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, the PI3K/Akt/mTOR pathway was downregulated after PTE treatment, which might account for the anti-MCL effects of PTE. Synergistic cytotoxicity was also observed, both in MCL cells and in xenograft mouse models, when PTE was administered in combination with bortezomib (BTZ). The antitumor effects of PTE shown in our study provide an innovative option for MCL patients with poor responses to standardized therapy. It is noteworthy that the treatment combining PTE with BTZ warrants clinical investigation, which may offer an alternative and effective MCL treatment in the future.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenxuan Bu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gaomei Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sujing Qiang
- Tongji University Cancer Center, Tongji University, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Knockdown of CEACAM19 suppresses human gastric cancer through inhibition of PI3K/Akt and NF-κB. Surg Oncol 2018; 27:495-502. [PMID: 30217308 DOI: 10.1016/j.suronc.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer directly affects the quality of human life worldwide. Some members, which belong to carcinoembryonic antigen-related cell adhesion molecule (CEACAM) subfamily, are deregulated in tumors. Of the subfamily, CEACAM19, a new member was the research object. Our study sought to explore the potential role of CEACAM19 in gastric cancer. According to the immunohistochemistry (IHC), RT-PCR and Western blot, CEACAM19 was over-expressed in gastric cancer tissues and cells. Moreover, the Western blot analysis showed that the expression of MMP2 and MMP9 was inhibited in CEACAM19 knockdown gastric cancer cells. Meanwhile, in SGC-7901 and MGC-803 cells, the knockdown of CEACAM19 reduced proliferation, migration and invasion. Additionally, the Western blot assay revealed that the phosphorylation levels of Akt and p65 were declined by the knockdown of CEACAM19. Furthermore, the influence of CEACAM19 knockdown was confirmed by the studies in vivo. Collectively, our results revealed that the CEACAM19 knockdown prevented the gastric cancer progression likely related to inactivating the PI3K/Akt and NF-κB signaling pathways. Our findings provided insights into a promising biomarker of gastric cancer and the potential molecule clues for the prevention of gastric cancer.
Collapse
|
6
|
Havranek O, Xu J, Köhrer S, Wang Z, Becker L, Comer JM, Henderson J, Ma W, Man Chun Ma J, Westin JR, Ghosh D, Shinners N, Sun L, Yi AF, Karri AR, Burger JA, Zal T, Davis RE. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood 2017; 130:995-1006. [PMID: 28646116 PMCID: PMC5813722 DOI: 10.1182/blood-2016-10-747303] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
We used clustered regularly interspaced short palindromic repeats/Cas9-mediated genomic modification to investigate B-cell receptor (BCR) signaling in cell lines of diffuse large B-cell lymphoma (DLBCL). Three manipulations that altered BCR genes without affecting surface BCR levels showed that BCR signaling differs between the germinal center B-cell (GCB) subtype, which is insensitive to Bruton tyrosine kinase inhibition by ibrutinib, and the activated B-cell (ABC) subtype. Replacing antigen-binding BCR regions had no effect on BCR signaling in GCB-DLBCL lines, reflecting this subtype's exclusive use of tonic BCR signaling. Conversely, Y188F mutation in the immunoreceptor tyrosine-based activation motif of CD79A inhibited tonic BCR signaling in GCB-DLBCL lines but did not affect their calcium flux after BCR cross-linking or the proliferation of otherwise-unmodified ABC-DLBCL lines. CD79A-GFP fusion showed BCR clustering or diffuse distribution, respectively, in lines of ABC and GCB subtypes. Tonic BCR signaling acts principally to activate AKT, and forced activation of AKT rescued GCB-DLBCL lines from knockout (KO) of the BCR or 2 mediators of tonic BCR signaling, SYK and CD19. The magnitude and importance of tonic BCR signaling to proliferation and size of GCB-DLBCL lines, shown by the effect of BCR KO, was highly variable; in contrast, pan-AKT KO was uniformly toxic. This discrepancy was explained by finding that BCR KO-induced changes in AKT activity (measured by gene expression, CXCR4 level, and a fluorescent reporter) correlated with changes in proliferation and with baseline BCR surface density. PTEN protein expression and BCR surface density may influence clinical response to therapeutic inhibition of tonic BCR signaling in DLBCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - R Eric Davis
- Department of Lymphoma and Myeloma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Wang Y, Jin F, Wang R, Li F, Wu Y, Kitazato K, Wang Y. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol 2017; 162:3269-3282. [PMID: 28780632 DOI: 10.1007/s00705-017-3511-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Kaio Kitazato
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China. .,Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Atsaves V, Zhang R, Ruder D, Pan Y, Leventaki V, Rassidakis GZ, Claret FX. Constitutive control of AKT1 gene expression by JUNB/CJUN in ALK+ anaplastic large-cell lymphoma: a novel crosstalk mechanism. Leukemia 2015; 29:2162-72. [PMID: 25987255 PMCID: PMC4633353 DOI: 10.1038/leu.2015.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/10/2023]
Abstract
Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is an aggressive T-cell non-Hodgkin lymphoma characterized by the t(2;5), resulting in the overexpression of nucleophosmin (NPM)-ALK, which is known to activate the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, resulting in cell cycle and apoptosis deregulation. ALK+ ALCL is also characterized by strong activator protein-1 (AP-1) activity and overexpression of two AP-1 transcription factors, CJUN and JUNB. Here, we hypothesized that a biologic link between AP-1 and AKT kinase may exist, thus contributing to ALCL oncogenesis. We show that JUNB and CJUN bind directly to the AKT1 promoter, inducing AKT1 transcription in ALK+ ALCL. Knockdown of JUNB and CJUN in ALK+ ALCL cell lines downregulated AKT1 mRNA and promoter activity and was associated with lower AKT1 protein expression and activation. We provide evidence that this is a transcriptional control mechanism shared by other cell types even though it may operate in a way that is cell context-specific. In addition, STAT3 (signal transducer and activator of transcription 3)-induced control of AKT1 transcription was functional in ALK+ ALCL and blocking of STAT3 and AP-1 signaling synergistically affected cell proliferation and colony formation. Our findings uncover a novel transcriptional crosstalk mechanism that links AP-1 and AKT kinase, which coordinate uncontrolled cell proliferation and survival in ALK+ ALCL.
Collapse
Affiliation(s)
- V Atsaves
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,GP Livanos and M Simou Laboratories, First Department of Critical Care Medicine and Pulmonary Services, Medical School of Athens University, 'Evangelismos' Hospital, Athens, Greece
| | - R Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Ruder
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Wuxi Medical School and Affiliated Hospital, Jiangnan University, Wuxi, China
| | - V Leventaki
- Department of Pathology, Saint Jude Children's Hospital, Memphis, TN, USA
| | - G Z Rassidakis
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology and Cytology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Experimental Therapeutics Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Kim M, Rahman MM, Cogle CR, McFadden G. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease. Biochem Biophys Res Commun 2015; 462:283-7. [PMID: 25843801 DOI: 10.1016/j.bbrc.2015.03.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Epstein-Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts.
Collapse
Affiliation(s)
- Manbok Kim
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R Cogle
- Department of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Abstract
OBJECTIVE Angiotensin-converting enzyme 2 (ACE2), its product angiotensin-(1-7), and its receptor Mas have been shown to moderate the adverse effects of the ACE-angiotensin II-AT1 axis in many diseases. The aim of this study was to determine whether the ACE2-Ang-(1-7)-Mas axis could have similar effects in a cell culture model of pancreatic damage. METHODS AR42J cells were stimulated with 10 nmol/L cerulein to simulate acute pancreatitis. ACE2, Ang-(1-7), Mas receptor, and PI3K/AKT pathway were measured by quantitative real-time polymerase chain reaction and Western blot analysis. RESULTS ACE2 and Mas receptor protein levels in AR42J cells were significantly increased (P < 0.05) between 30 minutes and 6 hours postdisease induction compared with the control group. Mas receptor gene expression was significantly increased (P < 0.05) at 2 hours postdisease induction, and Ang-(1-7) was increased at 6 hours. Treatment with Ang-(1-7) in AR42J cells increased IL-10, decreased IL-6 and IL-8, and reduced the damage to pancreatic cells. Levels of IL-6 and IL-8 in AR42J cell culture were increased significantly after treatment with A779. Moreover, Ang-(1-7) increased the concentration of PI3K/AKT pathway and eNOSin AR42J cells. CONCLUSIONS ACE2-angiotensin-(1-7)-Mas axis significantly inhibits pancreatitis in response to decreased inflammatory factors by the activation of endothelial nitric oxide synthase and NO signaling pathways.
Collapse
|
11
|
Gangwani MR, Noel RJ, Shah A, Rivera-Amill V, Kumar A. Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3K and MAPK signaling pathways. J Neuroinflammation 2013; 10:136. [PMID: 24225433 PMCID: PMC3831867 DOI: 10.1186/1742-2094-10-136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022] Open
Abstract
Background Neurocognitive impairments remain prevalent in HIV-1 infected individuals despite current antiretroviral therapies. It is increasingly becoming evident that astrocytes play a critical role in HIV-1 neuropathogenesis through the production of proinflammatory cytokines/chemokines. HIV-1 viral protein R (Vpr) plays an important role in neuronal dysfunction; however, its role in neuroinflammation is not well characterized. The major objective of this study was to determine the effect of Vpr in induction of proinflammatory chemokine CCL5 in astrocytes and to define the underlying mechanism(s). Methods SVGA astrocytes were either mock transfected or were transfected with a plasmid encoding HIV-1 Vpr, and the cells were harvested at different time intervals. The mRNA level of CCL5 expression was quantified using real-time RT-PCR, and cell culture supernatants were assayed for CCL5 protein concentration. Immunocytochemistry was performed on HIV-1 Vpr transfected astrocytes to check CCL5 expression. Various signaling mechanisms such as p38 MAPK, PI3K/Akt, NF-κB and AP-1 were explored using specific chemical inhibitors and siRNAs. Results HIV-1 Vpr transfected astrocytes exhibited time-dependent induction of CCL5 as compared to mock-transfected astrocytes at both the mRNA and protein level. Immunostained images of astrocytes transfected with HIV-1 Vpr also showed much higher accumulation of CCL5 in comparison to untransfected and mock-transfected astrocytes. Pre-treatment with NF-κB (SC514) and PI3K/Akt (LY294002) inhibitor partially abrogated CCL5 mRNA and protein expression levels as opposed to untreated controls after HIV-1 Vpr transfection. Specific siRNAs against p50 and p65 subunits of NF-κB, p38δ MAPK, Akt-2 and Akt-3, and AP-1 transcription factor substantially inhibited the production of CCL5 in HIV-1 Vpr transfected astrocytes. Conclusion These results demonstrate the ability of HIV-1 Vpr to induce CCL5 in astrocytes in a time-dependent manner. Furthermore, this effect was observed to be mediated by transcription factors NF-κB and AP-1 and involved the p38-MAPK and PI3K/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
The Synthetic Compound Norcantharidin Induced Apoptosis in Mantle Cell Lymphoma In Vivo and In Vitro through the PI3K-Akt-NF- κ B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:461487. [PMID: 23935664 PMCID: PMC3722980 DOI: 10.1155/2013/461487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
This study aimed to elucidate the antitumor activity of norcantharidin (NCTD) against human mantle cell lymphoma (MCL). Cell proliferation and apoptosis were examined by MTS and flow cytometry. Caspase-3, -8, and -9 activities were detected with a colorimetric caspase protease assay. Apoptotic proteins—including PARP, cyclin D1, Bcl-2 family proteins, XIAP, and cIAP I—were studied by western blot. The phosphoinositide 3 kinase (PI3K) inhibitor LY294002 was used to investigate the involvement of the PI3K/Akt signaling pathway. In vivo studies were performed using Z138 cell xenografts in nude mice. NCTD inhibited proliferation and induced apoptosis of Z138 and Mino cells, both in vitro and in vivo. PI3Kp110α and p-Akt expressions were downregulated by NCTD treatment. NCTD downregulated NF-κB activity by preventing NF-κB phosphorylation and nuclear translocation. This effect was correlated with the suppression of NF-κB-regulated gene products, such as cyclin D1, BAX, survivin, Bcl-2, XIAP, and cIAP. This phenomenon was blocked by the PI3K inhibitor LY294002. Our results demonstrated that NCTD can induce growth arrest and apoptosis in MCL cells and that the mechanism may involve the PI3K/Akt/NF-κB signaling pathway. NCTD may have therapeutic and/or adjuvant therapeutic applications in the treatment of MCL.
Collapse
|
13
|
Xu ZZ, Xia ZG, Wang AH, Wang WF, Liu ZY, Chen LY, Li JM. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab. Ann Hematol 2013; 92:1351-8. [PMID: 23636313 DOI: 10.1007/s00277-013-1770-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) represents the most common subtype of non-Hodgkin lymphoma and accounts for approximately 30% of newly diagnosed lymphoid neoplasms in Western countries, and 40-50% in China. A better understanding of the biology of DLBCL is needed for the development of potential therapeutic agents that target specific intracellular pathways. In this study, expression of the important components of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway and their clinical significance were investigated in 73 DLBCL cases. The effect of rituximab alone or combined with the PI3K/AKT/mTOR pathway inhibitor rapamycin was further evaluated in the DLBCL cell lines. A total of 73 patients were identified, including 45 men and 28 women aged 18 to 78 years (median age 50 years). Of these patients, p-AKT was positive in 40 cases (54.8%), p-p70S6K in 34 cases (46.6%), and p-4E-BP1 in 33 cases (45.2%). Activation of the PI3K/AKT/mTOR pathway was related to poor disease outcome in DLBCL patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) but not in those treated with rituximab-CHOP. Rituximab combined with rapamycin synergically downregulated the PI3K/AKT/mTOR signaling pathway. Western blot analysis revealed a baseline activation status of the PI3K/AKT/mTOR pathway in DLBCL cell lines, with high levels of p-AKT, p-mTOR, in addition to downstream molecules p-p70S6K and p-4E-BP1. The results indicate that the PI3K/AKT/mTOR pathway is a potentially important signaling route and an unfavorable prognostic factor for DLBCL. Patients with PI3K/AKT/mTOR activation experience a more rapidly deteriorating clinical course with poor treatment response and decreased survival time. Addition of rituximab could downregulate PI3K/AKT/mTOR activation, reversing its negative effect on chemotherapy-treated patients. In addition, our results indicate that the combination of rituximab and inhibition of the activated PI3K/AKT/mTOR pathway could be a promising target for DLBCL therapeutic intervention in the future.
Collapse
Affiliation(s)
- Zi-Zhen Xu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Bogusz AM, Baxter RHG, Currie T, Sinha P, Sohani AR, Kutok JL, Rodig SJ. Quantitative immunofluorescence reveals the signature of active B-cell receptor signaling in diffuse large B-cell lymphoma. Clin Cancer Res 2012; 18:6122-35. [PMID: 22966017 DOI: 10.1158/1078-0432.ccr-12-0397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE B-cell receptor (BCR)-mediated signaling is important in the pathogenesis of a subset of diffuse large B-cell lymphomas (DLBCL) and the BCR-associated kinases SYK and BTK have recently emerged as potential therapeutic targets. We sought to identify a signature of activated BCR signaling in DLBCL to aid the identification of tumors that may be most likely to respond to BCR-pathway inhibition. EXPERIMENTAL DESIGN We applied quantitative immunofluorescence (qIF) using antibodies to phosphorylated forms of proximal BCR signaling kinases LYN, SYK, and BTK and antibody to BCR-associated transcription factor FOXO1 on BCR-cross-linked formalin-fixed paraffin-embedded (FFPE) DLBCL cell lines as a model system and on two clinical cohorts of FFPE DLBCL specimens (n = 154). RESULTS A robust signature of active BCR signaling was identified and validated in BCR-cross-linked DLBCL cell lines and in 71/154 (46%) of the primary DLBCL patient specimens. Further analysis of the primary biopsy samples revealed increased nuclear exclusion of FOXO1 among DLBCL with qIF evidence of active BCR signaling compared with those without (P = 0.004). Nuclear exclusion of FOXO1 was also detected in a subset of DLBCL without evidence of proximal BCR signaling suggesting that alternative mechanisms for PI3K/AKT activation may mediate FOXO1 subcellular localization in these cases. CONCLUSION This study establishes the feasibility of detecting BCR activation in primary FFPE biopsy specimens of DLBCL. It lays a foundation for future dissection of signal transduction networks in DLBCL and provides a potential platform for evaluating individual tumors in patients receiving novel therapies targeting the BCR pathway.
Collapse
Affiliation(s)
- Agata M Bogusz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Alinari L, Christian B, Baiocchi RA. Novel targeted therapies for mantle cell lymphoma. Oncotarget 2012; 3:203-11. [PMID: 22361516 PMCID: PMC3326650 DOI: 10.18632/oncotarget.426] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy characterized by short median survival despite intensive therapies. The clinical behavior of MCL may be due to the complex pathophysiology of the disease which includes its genetic hallmark, the chromosomal translocation t(11;14) resulting in aberrant expression of cyclin D1, alteration in the DNA damage response, and constitutive activation of key anti-apoptotic pathways such as phosphatidyl-inositol 3-kinase (PI3K)/Akt and nuclear factor-kB (NF-kB). Collectively, these changes result in cell cycle dysregulation and give rise to profound genetic instability. Given this complex pathophysiology, the limited number of options for patients with relapsed/refractory MCL, and the difficulty in achieving long-lasting remissions with conventional approaches, it is essential to explore new treatment options targeting the numerous dysregulated pathways that are operable in MCL. We have recently reported that milatuzumab, a fully humanized anti-CD74 monoclonal antibody (mAb), in combination with anti-CD20 mAbs has significant preclinical and clinical activity in MCL. Here we discuss these results, provide additional insights into milatuzumab-mediated MCL cell death, and report preliminary data on the activity of other targeted biologic agents including PCI-32765 and CAL-101 currently undergoing evaluation at our institution and others.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD20/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- B-Lymphocytes/pathology
- Cell Cycle/physiology
- Clinical Trials as Topic
- Cyclin D1/metabolism
- DNA Repair
- Female
- Histocompatibility Antigens Class II/immunology
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Male
- Middle Aged
- Molecular Targeted Therapy
- NF-kappa B/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Piperidines
- Proto-Oncogene Proteins c-akt/metabolism
- Purines/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Quinazolinones/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Translocation, Genetic
Collapse
Affiliation(s)
- Lapo Alinari
- Division of Hematology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
16
|
Chapuy B, Schuelper N, Panse M, Dohm A, Hand E, Schroers R, Truemper L, Wulf GG. Multikinase inhibitor sorafenib exerts cytocidal efficacy against Non-Hodgkin lymphomas associated with inhibition of MAPK14 and AKT phosphorylation. Br J Haematol 2011; 152:401-12. [PMID: 21689083 DOI: 10.1111/j.1365-2141.2010.08526.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular signal transduction by kinase-mediated phosphorylation is essential for the survival and growth of lymphoma cells. This study analysed the multikinase inhibitor sorafenib for its cytotoxic activity against lymphoma cells. We found that sorafenib reduced cell viability at low micromolar concentrations in a time-dependent manner in cell lines and primary cell suspensions representing major types of aggressive B- and T-cell lymphomas. In cells surviving short term exposure, proliferative arrest occurred leading to complete loss of in vitro clonogenicity. Previously described sorafenib targets within the RAF kinase family were found to be expressed and phosphorylated in all cell lines, and sorafenib perturbed the activation of classical RAF/MEK/ERK pathway targets. However, using a global phoshoprotein array, the most consistent downstream effect of sorafenib in NHL cells was the inhibition of mitogen-activated protein kinase 14 (MAPK14) and panAKT phosphorylation. In conclusion, sorafenib has significant in vitro efficacy against aggressive B- and T-cell lymphoma cells, associated with inhibition of MAPK14 and panAKT.
Collapse
Affiliation(s)
- Bjoern Chapuy
- Department of Haematology and Oncology, Georg-August-University Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Han SS, Yun H, Son DJ, Tompkins VS, Peng L, Chung ST, Kim JS, Park ES, Janz S. NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol Cancer 2010; 9:97. [PMID: 20433747 PMCID: PMC2876994 DOI: 10.1186/1476-4598-9-97] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 04/30/2010] [Indexed: 11/21/2022] Open
Abstract
Background Myc is a well known driver of lymphomagenesis, and Myc-activating chromosomal translocation is the recognized hallmark of Burkitt lymphoma, an aggressive form of non-Hodgkin's lymphoma. We developed a model that mimics this translocation event by inserting a mouse Myc cDNA gene into the immunoglobulin heavy chain locus, just upstream of the intronic Eμ enhancer. These mice, designated iMycEμ, readily develop B-cell lymphoma. To study the mechanism of Myc-induced lymphoma, we analyzed signaling pathways in lymphoblastic B-cell lymphomas (LBLs) from iMycEμ mice, and an LBL-derived cell line, iMycEμ-1. Results Nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) were constitutively activated in iMycEμ mice, not only in LBLs but also in the splenic B-lymphocytes of young animals months before tumors developed. Moreover, inhibition of either transcription factor in iMycEμ-1 cells suppressed growth and caused apoptosis, and the abrogation of NF-κB activity reduced DNA binding by both STAT3 and Myc, as well as Myc expression. Inhibition of STAT3 signaling eliminated the activity of both NF-κB and Myc, and resulted in a corresponding decrease in the level of Myc. Thus, in iMycEμ-1 cells NF-κB and STAT3 are co-dependent and can both regulate Myc. Consistent with this, NF-κB and phosphorylated STAT3 were physically associated with one another. In addition, LBLs and iMycEμ-1 cells also showed constitutive AKT phosphorylation. Blocking AKT activation by inhibiting PI3K reduced iMycEμ-1 cell proliferation and caused apoptosis, via downregulation of NF-κB and STAT3 activity and a reduction of Myc levels. Co-treatment with NF-κB, STAT3 or/and PI3K inhibitors led to additive inhibition of iMycEμ-1 cell proliferation, suggesting that these signaling pathways converge. Conclusions Our findings support the notion that constitutive activation of NF-κB and STAT3 depends on upstream signaling through PI3K, and that this activation is important for cell survival and proliferation, as well as for maintaining the level of Myc. Together, these data implicate crosstalk among NF-κB, STAT3 and PI3K in the development of iMycEμ B-cell lymphomas.
Collapse
Affiliation(s)
- Seong-Su Han
- University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hasselblom S, Hansson U, Olsson M, Torén L, Bergström A, Nilsson-Ehle H, Andersson PO. High immunohistochemical expression of p-AKT predicts inferior survival in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Br J Haematol 2010; 149:560-8. [PMID: 20201946 DOI: 10.1111/j.1365-2141.2010.08123.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemotherapy and rituximab (R) is current standard therapy in diffuse large B-cell lymphoma (DLBCL), but a substantial proportion of patients still fail to reach sustained remission. In vitro studies have indicated that rituximab resistance could be accompanied by dysregulated apoptotic pathways, such as the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, which can be constitutively activated in DLBCL. In this retrospective, immunohistochemical study on 106 patients treated with R-CHO(E)P (cyclophosphamide, doxorubicin, vincristine, prednisone, rituximab [+etoposide]), we investigated the prognostic role of proteins involved in different apoptotic pathways; phosphorylated AKT (p-AKT), bcl-2, MCL1, bcl-xL, Bax and Bak. High p-AKT expression (>108 cells/mm2, highest quartile, n=27) predicted worse progression-free (PFS) (P=0.02) and overall (OS) (P=0.01) survival, independent of International Prognostic Index and sex. Also bcl-2+ (cut-off 50%) predicted worse PFS (P=0.005) and OS (P=0.05) but after adjustment for clinical factors only the influence on PFS (P=0.03) remained significant. The prognostic impact of p-AKT overexpression was independent of bcl-2 status. MCL1, bcl-xL, Bax and Bak expression did not add any prognostic information. Our results suggest that high p-AKT expression predicts worse outcome, possibly indicating that inhibition of the activated PI3K/AKT pathway could be of clinical interest in DLBCL patients. In addition, bcl-2 status could have prognostic importance also in the era of immunochemotherapy.
Collapse
Affiliation(s)
- Sverker Hasselblom
- Section of Haematology and Coagulation, Department of Internal Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Timakhov RA, Tan Y, Rao M, Liu Z, Altomare DA, Pei J, Wiest DL, Favorova OO, Knepper JE, Testa JR. Recurrent chromosomal rearrangements implicate oncogenes contributing to T-cell lymphomagenesis in Lck-MyrAkt2 transgenic mice. Genes Chromosomes Cancer 2009; 48:786-94. [PMID: 19530243 DOI: 10.1002/gcc.20683] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogene v-akt was isolated from a retrovirus that induced naturally occurring thymic lymphomas in AKR mice. We hypothesized that constitutive activation of Akt2 could serve as a first hit for the clonal expansion of malignant T-cells by promoting cell survival and genomic instability, leading to chromosome alterations. Furthermore, genes that cooperate with Akt2 to promote malignant transformation may reside at translocation/inversion junctions found in spontaneous thymic lymphomas from transgenic mice expressing constitutively active Akt2 specifically in T cells. Cytogenetic analysis revealed that thymic tumors from multiple founder lines exhibited either of two recurrent chromosomal rearrangements, inv(6)(A2B1) or t(14;15)(C2;D1). Fluorescence in situ hybridization, array CGH, and PCR analysis were used to delineate the inv(6) and t(14;15) breakpoints. Both rearrangements involved T-cell receptor loci. The inv(6) results in robust upregulation of the homeobox/transcription factor gene Dlx5 because of its relocation near the Tcrb enhancer. The t(14;15) places the Tcra enhancer in the vicinity of the Myc proto-oncogene, resulting in upregulated Myc expression. These findings suggest that activation of the Akt pathway can act as the initial hit to promote cell survival and genomic instability, whereas the acquisition of T-cell-specific overexpression of Dlx5 or Myc leads to lymphomagenesis.
Collapse
Affiliation(s)
- Roman A Timakhov
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu Q, Chen Y, Cui G, Cheng Y. Wortmannin inhibits K562 leukemic cells by regulating PI3k/Akt channel in vitro. ACTA ACUST UNITED AC 2009; 29:451-6. [PMID: 19662361 DOI: 10.1007/s11596-009-0412-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Indexed: 01/20/2023]
Abstract
The inhibitory effect of wortmannin on leukemic cells and the possible mechanisms were examined. K562 cells were treated with wortmannin of various concentrations (3.125-100 nmol/L) for 0-72 h. MTT assay was used to evaluate the inhibitory effect of wortmannin on the growth of K562 cells. Cell apoptosis was detected by both Annexin-V FITC/PI double-labeled cytometry and transmission electron microscopy (TEM). The expression of p-Akt, T-p-Akt, NF-kappaBp65 and IKK-kappaB was determined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that wortmannin obviously inhibited growth and induced apoptosis of K562 cells in vitro in a time- and dose-dependent manner. The IC(50) value of wortmannin for 24 h was 25+/-0.14 nmol/L. Moreover, wortmannin induced K562 cells apoptosis in a dose-dependent manner. TEM revealed typical morphological changes of apoptosis in wortmannin-treated K562 cells, such as chromatin condensation, karyopyknosis, karyorhexis and apoptotic bodies. Additionally, several important intracellular protein kinases such as p-Akt, NF-kappaBp65 and IKK-kappaB experienced degradation of various degrees in a dose-dependent manner both at protein level and transcription level when cultured with wortmannin, but the expression of total Akt showed no change. It is concluded that wortmannin can inhibit the proliferation and induce apoptosis of K562 leukemia cells possibly by down-regulating the survival signaling pathways (PI3K/Akt and NF-kappaB channels).
Collapse
Affiliation(s)
- Qing Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
21
|
AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 2008; 113:1723-9. [PMID: 19064730 DOI: 10.1182/blood-2008-02-137737] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PI3K/AKT signaling is activated in various hematologic malignancies. We evaluated the effect of a novel, pan-AKT kinase inhibitor, GSK690693, on the proliferation of 112 cell lines representing different hematologic neoplasia. Fifty-five percent of all cell lines tested were sensitive to AKT inhibitor (EC(50)<1 microM), with acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma, and Burkitt lymphoma showing 89%, 73%, and 67% sensitivity to GSK690693, respectively. The antiproliferative effect was selective for the malignant cells, as GSK690693 did not inhibit the proliferation of normal human CD4(+) peripheral T lymphocytes as well as mouse thymocytes. Phosphorylation of downstream substrates of AKT was reduced in both sensitive and insensitive cell lines on treatment with GSK690693, suggesting that the cause of resistance was not related to the lack of AKT kinase inhibition. Consistent with the role of AKT in cell survival, GSK690693 also induced apoptosis in sensitive ALL cell lines. Overall, our data provide direct evidence for the role of AKT signaling in various hematologic malignancies, especially ALL and some lymphomas.
Collapse
|
22
|
Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Biophys Res Commun 2008; 378:103-7. [PMID: 19013131 DOI: 10.1016/j.bbrc.2008.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 12/15/2022]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). Age-dependent alterations of cell signaling play an important role in the onset of AD. The serine/threonine kinase Akt is a critical cell signaling to neuronal survival. Using the senescence-accelerated mouse SAMP10, we investigated the effect of aging on AKT signaling in hippocampus tissue. During aging, the expression of Akt mRNA and protein remained stable. However, the constructive phosphorylation of Akt(Ser473) displayed a continuous decrease after 6 months in SAMP10. When compared with the control SAMR1, aged SAMP10 mice showed significant reduced phosphorylation of Akt(Ser473). SAMP10 at the age of 6 months showed obvious deterioration in performance of learning and memory tasks. Thus, the data reported here suggested a potential link between the age-related alteration of Akt(Ser473) and the deterioration in performance of learning and memory tasks in SAMP10 mouse.
Collapse
|
23
|
Tan Y, Timakhov RA, Rao M, Altomare DA, Xu J, Liu Z, Gao Q, Jhanwar SC, Di Cristofano A, Wiest DL, Knepper JE, Testa JR. A novel recurrent chromosomal inversion implicates the homeobox gene Dlx5 in T-cell lymphomas from Lck-Akt2 transgenic mice. Cancer Res 2008; 68:1296-302. [PMID: 18316591 DOI: 10.1158/0008-5472.can-07-3218] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oncogene v-akt was isolated from a retrovirus that induced murine thymic lymphomas. Transgenic mice expressing a constitutively activated form of the cellular homologue Akt2 specifically in immature T cells develop spontaneous thymic lymphomas. We hypothesized that tumors from these mice might exhibit oncogenic chromosomal rearrangements that cooperate with activated Akt2 in lymphomagenesis. Cytogenetic analysis revealed a recurrent clonal inversion of chromosome 6, inv(6), in thymic lymphomas from multiple transgenic founder lines, including one line in which 15 of 15 primary tumors exhibited this same rearrangement. Combined fluorescence in situ hybridization, PCR, and DNA sequence analyses showed that the distal inv(6) breakpoint resides at the T-cell receptor beta chain locus, Tcrb. The proximal breakpoint maps to a region near a locus comprising the linked homeobox/transcription factor genes Dlx5 and Dlx6. Expression analysis of genes translocated to the vicinity of the Tcrb enhancer revealed that Dlx5 and Dlx6 are overexpressed in tumors exhibiting the inv(6). Experimental overexpression of Dlx5 in mammalian cells resulted in enhanced cell proliferation and increased colony formation, and clonogenic assays revealed cooperativity when both Dlx5 and activated Akt2 were coexpressed. In addition, DLX5, but not DLX6, was found to be abundantly expressed in three of seven human T-cell lymphomas tested. These findings suggest that the Dlx5 can act as an oncogene by cooperating with Akt2 to promote lymphomagenesis.
Collapse
Affiliation(s)
- Yinfei Tan
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 2008; 12:153-60. [DOI: 10.1016/j.anndiagpath.2007.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Han H, Shin SW, Seo CY, Kwon HC, Han JY, Kim IH, Kwak JY, Park JI. 15-Deoxy-delta 12,14-prostaglandin J2 (15d-PGJ 2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis 2007; 12:2101-14. [PMID: 17786557 DOI: 10.1007/s10495-007-0124-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising new agent for the treatment of cancer, resistance to TRAIL remains a therapeutic challenge. Identifying agents to use in combination with TRAIL to enhance apoptosis in leukemia cells would increase the potential utility of this agent as a therapy for leukemia. Here, we show that 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can sensitize TRAIL-resistant leukemic HL-60 cells to TRAIL-induced apoptosis. The sensitization to TRAIL-induced apoptosis by 15d-PGJ2 was not blocked by a PPARgamma inhibitor (GW9662), suggesting a PPARgamma-independent mechanism. This process was accompanied by activation of caspase-8, caspase-9, and caspase-3 and was concomitant with Bid and PARP cleavage. We observed significant decreases in XIAP, Bcl-2, and c-FLIP after cotreatment with 15d-PGJ2 and TRAIL. We also observed the inhibition of Akt expression and phosphorylation by cotreatment with 15d-PGJ2 and TRAIL. Furthermore, inactivation of Akt by Akt inhibitor IV sensitized human leukemic HL-60 cells to TRAIL, indicating a key role for Akt inhibition in these events. Taken together, these findings indicate that 15d-PGJ2 may augment TRAIL-induced apoptosis in human leukemia cells by down-regulating the expression and phosphorylation of Akt.
Collapse
Affiliation(s)
- Hoon Han
- Department of Biochemistry, Dong-A University College of Medicine, 3 Ga 1, Dongdaesin-Dong, Seo-Gu, Busan 602-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA, Paik JH, Park BK, Kim CW, Kim YN. The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 2007; 213:170-9. [PMID: 17768706 DOI: 10.1002/path.2219] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK/T-cell lymphoma (NKTL) is strongly associated with latent Epstein-Barr virus (EBV) infection. Recently, latent membrane protein 1 (LMP1), an EBV oncoprotein, was reported to activate the phosphatidylinositol-3 kinase (PI3K)/Akt pathway for cell survival. Because geldanamycin (GA) and its derivative, 17-allylamino-17-demethoxygeldanamycin (17-AAG), exhibit anti-tumour activity by degrading HSP90 client proteins, including Akt, we investigated the effect of GA and 17-AAG on the survival of NKTL cell lines. EBV-positive NKTL cell lines, Hank-1 and NK-YS, and an EBV-negative NK leukaemia cell line, NK-L, were treated with PI3K and Akt inhibitors, GA, and 17-AAG, and were subjected to apoptosis and cell viability assays, and immunoblot analysis. EBV-positive B-lymphoblastoid cell lines IM9 and LMP1-transfected IM9 (IM9-LMP1) were also included. Hank-1 and NK-YS cell viability was compromised and apoptosis was induced by LY294002 (PI3K inhibitor) or Akt inhibitor II. GA or 17-AAG administration resulted in the apoptosis of NKTL cells, accompanied by Akt and pAkt down-regulation, caspase 3 activation, and mitochondrial membrane potential disruption. The intrinsic level of pAkt was higher in EBV-positive NKTL cells than in EBV-negative NK-L, and GA or 17-AAG decreased the viability of NKTL cells more efficiently than NK-L. Moreover, IM9-LMP1 was more sensitive to Akt inhibitor II or HSP90 inhibitors than IM9. Importantly, GA showed little effect on the viability of normal peripheral NK cells as non-neoplastic counterparts for comparison. In conclusion, this study suggests that the PI3K/Akt pathway is frequently activated in EBV-positive NKTL and that therapeutic modalities based on targeting the PI3K/Akt pathway with HSP90 inhibitors could be useful for achieving NKTL control.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Benzoquinones/pharmacology
- Cell Survival
- Down-Regulation/drug effects
- Drug Evaluation, Preclinical
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lactams, Macrocyclic/pharmacology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/pathology
- Membrane Potential, Mitochondrial/physiology
- Oncogene Protein v-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y K Jeon
- Department of Pathology and Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rudelius M, Pittaluga S, Nishizuka S, Pham THT, Fend F, Jaffe ES, Quintanilla-Martinez L, Raffeld M. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006; 108:1668-76. [PMID: 16645163 PMCID: PMC1895501 DOI: 10.1182/blood-2006-04-015586] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether the PI3K/Akt signaling pathway is involved in the pathogenesis of mantle cell lymphoma (MCL), we investigated the phosphorylation status of Akt and multiple downstream targets in primary MCL cases and cell lines. Akt was phosphorylated in 12 of 12 aggressive blastoid MCL variants and in 4 of 4 MCL cell lines. In contrast, phosphorylated Akt was present in only 5 of 16 typical MCL, 3 at comparable levels to the blastoid cases, and 2 at low levels. The presence of p-Akt was accompanied by the phosphorylation of p27(kip1), FRKHL-1, MDM2, Bad, mTOR, and p70S6K. Inhibition of the PI3K/Akt pathway in the MCL cell lines abrogated or reduced the phosphorylation of Akt, p27(kip1), FRKHL-1, MDM2, Bad, mTOR, GSK-3beta, IkappaB, and led to cell-cycle arrest and apoptosis. Six MCL cases (5 with activated Akt and 1 with inactive Akt) and 3 of 4 cell lines showed loss of PTEN expression. PIK3CA mutations were not detected. We conclude that constitutive activation of the PI3K/Akt pathway contributes to the pathogenesis of MCL and preferentially occurs in blastoid variants. One possible mechanism of activation is loss of PTEN expression. These data suggest that PI3K/Akt inhibitors may be effective in the treatment of Akt-activated MCL.
Collapse
Affiliation(s)
- Martina Rudelius
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|