1
|
Martínez M, Úbeda A, Martínez‑Botas J, Trillo M. Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncol Lett 2022; 24:295. [PMID: 35949615 PMCID: PMC9353226 DOI: 10.3892/ol.2022.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that intermittent exposure to a 50 Hz, 100 µT sinusoidal magnetic field (MF) promotes proliferation of human neuroblastoma cells, NB69. This effect is mediated by activation of the epidermal growth factor receptor through a free radical-dependent activation of the p38 pathway. The present study investigated the possibility that the oxidative stress-sensitive protein p53 is a potential target of the MF, and that field exposure can affect the protein expression. To that end, NB69 cells were exposed to short intervals of 30 to 120 min to the aforementioned MF parameters. Two specific anti-p53 antibodies that allow discrimination between the wild and unfolded forms of p53 were used to study the expression and cellular distribution of both isoforms of the protein. The expression of the antiapoptotic protein Bcl-2, whose regulation is mediated by p53, was also analyzed. The obtained results revealed that MF exposure induced increases in p53 gene expression and in protein expression of the wild-type form of p53. Field exposure also caused overexpression of the unfolded form of p53, together with changes in the nuclear/cytoplasmic distribution of both forms of the protein. The expression of protein Bcl-2 was also significantly increased in response to the MF. As a whole, these results indicated that the MF is capable of interacting with the function, distribution and conformation of protein p53. Such interactions could be involved in previously reported MF effects on NB69 proliferation promotion.
Collapse
Affiliation(s)
- María Martínez
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| | - Alejandro Úbeda
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| | - Javier Martínez‑Botas
- Biochemistry Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid, Spain
| | - María Trillo
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| |
Collapse
|
2
|
Bevington M. 'Proof of EHS beyond all reasonable doubt'. Comment on: Leszczynski D. Review of the scientific evidence on the individual sensitivity to electromagnetic fields (EHS). Rev Environ Health 2021; https://doi.org/10.1515/reveh-2021-0038. Online ahead of print. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:299-301. [PMID: 34343421 DOI: 10.1515/reveh-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Michael Bevington
- Chair of Trustees, Electrosensitivity UK, London, UK, http://www.es-uk.info/
| |
Collapse
|
3
|
Darvishi M, Mashati P, Kandala S, Paridar M, Takhviji V, Ebrahimi H, Zibara K, Khosravi A. Electromagnetic radiation: a new charming actor in hematopoiesis? Expert Rev Hematol 2021; 14:47-58. [PMID: 32951483 DOI: 10.1080/17474086.2020.1826301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Electromagnetic waves play indispensable roles in life. Many studies addressed the outcomes of Electromagnetic field (EMF) on various biological functions such as cell proliferation, gene expression, epigenetic alterations, genotoxic, and carcinogenic effects, and its therapeutic applications in medicine. The impact of EMF on bone marrow (BM) is of high importance; however, EMF effects on BM hematopoiesis are not well understood. AREAS COVERED Publications in English were searched in ISI Web of Knowledge and Google Scholar with no restriction on publication date. A literature review has been conducted on the consequences of EMF exposure on BM non-hematopoietic stem cells, mesenchymal stem cells, and the application of these waves in regenerative medicine. Human blood cells such as lymphocytes, red blood cells and their precursors are altered qualitatively and quantitatively following electromagnetic radiation. Therefore, studying the impact of EMF on related signaling pathways in hematopoiesis and hematopoietic stem cell (HSC) differentiation could give a better insight into its efficacy on hematopoiesis and its potential therapeutic usage. EXPERT OPINION In this review, authors evaluated the possible biologic consequences of EMF on the hematopoiesis process in addition to its probable application in the treatment of hematologic disorders.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pargol Mashati
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sahithi Kandala
- University of Colorado, Boulder Department: Electrical, Computer and Energy Engineering , Colarada, USA
| | - Mostafa Paridar
- Deputy of Management and Resources Development, Ministry of Health and Medical Education , Tehran, Iran
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Hossein Ebrahimi
- School of Nursing, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Kazem Zibara
- PRASE & Biology Department, Faculty of Sciences I, Lebanese University , Beirut, Lebanon
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
4
|
Baaken D, Wollschläger D, Samaras T, Schüz J, Deltour I. Exposure To Extremely Low-Frequency Magnetic Fields In Low- And Middle-Income Countries: An Overview. RADIATION PROTECTION DOSIMETRY 2020; 191:ncaa172. [PMID: 33232971 PMCID: PMC7745074 DOI: 10.1093/rpd/ncaa172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
To compare extremely low-frequency magnetic field (ELF-MF) exposure in the general population in low- and middle-income countries (LMICs) with high-income countries (HIC), we carried out a systematic literature search resulting in 1483 potentially eligible articles; however, only 25 studies could be included in the qualitative synthesis. Studies showed large heterogeneity in design, exposure environment and exposure assessment. Exposure assessed by outdoor spot measurements ranged from 0.03 to 4μT. Average exposure by indoor spot measurements in homes ranged from 0.02 to 0.4μT. Proportions of homes exposed to a threshold of ≥0.3μT were many times higher in LMICs compared to HIC. Based on the limited data available, exposure to ELF-MF in LMICs appeared higher than in HIC, but a direct comparison is hampered by a lack of representative and systematic monitoring studies. Representative measurement studies on residential exposure to ELF-MF are needed in LMICs together with better standardisation in the reporting.
Collapse
Affiliation(s)
- Dan Baaken
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | - Isabelle Deltour
- International Agency for Research on Cancer (IARC/WHO), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| |
Collapse
|
5
|
Shallis RM, Weiss JJ, Deziel NC, Gore SD. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev 2020; 47:100760. [PMID: 32988660 DOI: 10.1016/j.blre.2020.100760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Myeloid neoplasms like acute myeloid leukemia (AML) originate from genomic disruption, usually in a multi-step fashion. Hematopoietic stem/progenitor cell acquisition of abnormalities in vital cellular processes, when coupled with intrinsic factors such as germline predisposition or extrinsic factors such as the marrow microenvironment or environmental agents, can lead to requisite pre-leukemic clonal selection, expansion and evolution. Several of these entities have been invoked as "leukemogens." The known leukemogens are numerous and are found in the therapeutic, occupational and ambient environments, however they are often difficult to implicate for individual patients. Patients treated with particular chemotherapeutic agents or radiotherapy accept a calculated risk of therapy-related AML. Occupational exposures to benzene, dioxins, formaldehyde, electromagnetic and particle radiation have been associated with an increased risk of AML. Although regulatory agencies have established acceptable exposure limits in the workplace, accidental exposures and even ambient exposures to leukemogens are possible. It is plausible that inescapable exposure to non-anthropogenic ambient leukemogens may be responsible for many cases of non-inherited de novo AML. In this review, we discuss the current understanding of leukemogens as they relate to AML, assess to what extent the term "de novo" leukemia is meaningful, and describe the potential to identify and characterize new leukemogens.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA.
| | - Julian J Weiss
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
6
|
Carpenter DO. Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. ENVIRONMENTAL RESEARCH 2019; 178:108688. [PMID: 31476684 DOI: 10.1016/j.envres.2019.108688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
While there has been evidence indicating that excessive exposure to magnetic fields from 50 to 60 Hz electricity increases risk of cancer, many argue that the evidence is inconsistent and inconclusive. This is particularly the case regarding magnetic field exposure and childhood leukemia. A major goal of this study is to examine how source of funding influences the reported results and conclusions. Several meta-analyses dating from about 2000 all report significant associations between exposure and risk of leukemia. By examining subsequent reports on childhood leukemia it is clear that almost all government or independent studies find either a statistically significant association between magnetic field exposure and childhood leukemia, or an elevated risk of at least OR = 1.5, while almost all industry supported studies fail to find any significant or even suggestive association. A secondary goal of this report is to examine the level of evidence for exposure and elevated risk of various adult cancers. Based on pooled or meta-analyses as well as subsequent peer-reviewed studies there is strong evidence that excessive exposure to magnetic fields increases risk of adult leukemia, male and female breast cancer and brain cancer. There is less convincing but suggestive evidence for elevations in several other cancer types. There is less clear evidence for bias based on source of funding in the adult cancer studies. There is also some evidence that both paternal and maternal prenatal exposure to magnetic fields results in an increased risk of leukemia and brain cancer in offspring. When one allows for bias reflected in source of funding, the evidence that magnetic fields increase risk of cancer is neither inconsistent nor inconclusive. Furthermore adults are also at risk, not just children, and there is strong evidence for cancers in addition to leukemia, particularly brain and breast cancer.
Collapse
Affiliation(s)
- David O Carpenter
- Institute for Health and the Environment, University at Albany, A Collaborating Centre of the World Health Organization, 5 University Place, Room A 217, Rensselaer, NY, N 12144, USA.
| |
Collapse
|
7
|
Swanson J, Kheifets L, Vergara X. Changes over time in the reported risk for childhood leukaemia and magnetic fields. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:470-488. [PMID: 30736028 DOI: 10.1088/1361-6498/ab0586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There have been many studies from 1979 to the present reporting raised risks for childhood leukaemia with exposure to power-frequency magnetic fields. There are also suggestions that the reported risk has been decreasing. We examine trends in the risk over time from all available studies. For 41 studies, we combine reported risks using inverse-variance weighting, drawing risk estimates from previous pooled analyses where possible for greater consistency. We examine the cumulative risk for studies published up to each successive calendar year for all studies and for various subsets, and test for a trend over the period. The cumulative relative risk has indeed declined, for our most rigorous analysis from a maximum 2.44 in 1997 to 1.58 in 2017, but not statistically significantly when tested as a linear trend. We find suggestions of higher risks in studies looking at higher exposures and in studies with better quality exposure assessment. We conclude that there is a decline in reported risk from the mid 1990s to now, which is unlikely to be solely explained by improving study quality but may be due to chance, and an elevated risk remains.
Collapse
Affiliation(s)
- J Swanson
- National Grid, London, United Kingdom
| | | | | |
Collapse
|
8
|
Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:643-658. [PMID: 30025338 DOI: 10.1016/j.envpol.2018.07.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 07/04/2018] [Indexed: 05/24/2023]
Abstract
Exposure to low frequency and radiofrequency electromagnetic fields at low intensities poses a significant health hazard that has not been adequately addressed by national and international organizations such as the World Health Organization. There is strong evidence that excessive exposure to mobile phone-frequencies over long periods of time increases the risk of brain cancer both in humans and animals. The mechanism(s) responsible include induction of reactive oxygen species, gene expression alteration and DNA damage through both epigenetic and genetic processes. In vivo and in vitro studies demonstrate adverse effects on male and female reproduction, almost certainly due to generation of reactive oxygen species. There is increasing evidence the exposures can result in neurobehavioral decrements and that some individuals develop a syndrome of "electro-hypersensitivity" or "microwave illness", which is one of several syndromes commonly categorized as "idiopathic environmental intolerance". While the symptoms are non-specific, new biochemical indicators and imaging techniques allow diagnosis that excludes the symptoms as being only psychosomatic. Unfortunately standards set by most national and international bodies are not protective of human health. This is a particular concern in children, given the rapid expansion of use of wireless technologies, the greater susceptibility of the developing nervous system, the hyperconductivity of their brain tissue, the greater penetration of radiofrequency radiation relative to head size and their potential for a longer lifetime exposure.
Collapse
Affiliation(s)
- Dominique Belpomme
- European Cancer Environment Research Institute, Brussels, Belgium; Paris V University Hospital, Paris, France
| | - Lennart Hardell
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Oncology, Orebro University Hospital, Faculty of Medicine, Orebro, Sweden
| | - Igor Belyaev
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science, Bratislava, Slovak Republic; Laboratory of Radiobiology, Institute of General Physics, Russian Academy of Science, Moscow, Russian Federation
| | - Ernesto Burgio
- European Cancer Environment Research Institute, Brussels, Belgium; Instituto Scientifico Biomedico Euro Mediterraneo, Mesagne, Italy
| | - David O Carpenter
- European Cancer Environment Research Institute, Brussels, Belgium; Institute for Health and the Environment, University at Albany, Albany, NY, USA; Child Health Research Centre, The University of Queensland, Faculty of Medicine, Brisbane, Australia.
| |
Collapse
|
9
|
Tong Y, Xiang Y, Li B, Bao S, Zhou Y, Yuan W, Ling Y, Hao D, Zhu H, Sun Z. Association of ERCC2 Gene Polymorphisms with Susceptibility to Diffuse Large B-Cell Lymphoma. Med Sci Monit 2018; 24:7015-7022. [PMID: 30279407 PMCID: PMC6179170 DOI: 10.12659/msm.908813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The objective of this study was to detect the association between ERCC excision repair 2, TFIIH core complex helicase subunit (ERCC2) gene polymorphisms and diffuse large B-cell lymphoma (DLBCL) susceptibility. MATERIAL AND METHODS This study used a case-control design. ERCC2 gene rs1799793 (Asp312Asn) and rs13181 (Lys751Gln) polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) both in DLBCL patients and healthy controls. The association between ERCC2 gene polymorphisms and DLBCL risk was assessed by χ² test. Odds ratios (ORs) with corresponding 95% confidence intervals (95% CIs) were used to address the association strength. Subgroup analyses were also performed to investigate the genetic effects of ERCC2 polymorphisms on clinical characteristics of DLBCL patients. RESULTS A significant association was discovered between the rs1799793 A allele and increased DLBCL risk (P=0.031, OR=1.928, 95% CI=1.052-3.534). The C allele of rs13181 was obviously associated with elevated DLBCL susceptibility (P=0.047, OR=1.820, 95% CI=1.002-3.305). The subgroup analysis demonstrated that rs1799793 and rs13181 polymorphisms had no relationship with serum lactate dehydrogenase level, nidus number, B-symptoms, Ann Arbor stages, or immunological types in DLBCL cases (P>0.05 for all). CONCLUSIONS Minor allele carriers of ERCC2 gene rs1799793 (Asp312Asn) and rs13181 (Lys751Gln) polymorphisms had higher susceptibility to DLBCL.
Collapse
Affiliation(s)
- Yong Tong
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Yinzhou Xiang
- Department of Otolaryngology, China Three Gorges University People's Hospital, Yichang, Hubei, China (mainland)
| | - Bao Li
- Department of Hematopathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China (mainland)
| | - Shijie Bao
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Ying Zhou
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Wen Yuan
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Yu Ling
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Dan Hao
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Huamin Zhu
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
10
|
Saliev T, Begimbetova D, Masoud AR, Matkarimov B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:25-36. [PMID: 30030071 DOI: 10.1016/j.pbiomolbio.2018.07.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Controversial, sensational and often contradictory scientific reports have triggered active debates over the biological effects of electromagnetic fields (EMFs) in literature and mass media the last few decades. This could lead to confusion and distraction, subsequently hampering the development of a univocal conclusion on the real hazards caused by EMFs on humans. For example, there are lots of publications indicating that EMF can induce apoptosis and DNA strand-breaks in cells. On the other hand, these effects could rather be beneficial, in that they could be effectively harnessed for treatment of various disorders, including cancer. This review discusses and analyzes the results of various in vitro, in vivo and epidemiological studies on the effects of non-ionizing EMFs on cells and organs, including the consequences of exposure to the low and high frequencies EM spectrum. Emphasis is laid on the analysis of recent data on the role of EMF in the induction of oxidative stress and DNA damage. Additionally, the impact of EMF on the reproductive system has been discussed, as well as the relationship between EM radiation and blood cancer. Apart from adverse effects, the therapeutic potential of EMFs for clinical use in different pathologies is also highlighted.
Collapse
Affiliation(s)
- Timur Saliev
- Kazakh National Medical University Named After S.D. Asfendiyarov, Tole Bi Street 94, Almaty, 050000, Kazakhstan; National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Abdul-Razak Masoud
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|
11
|
Havas M. When theory and observation collide: Can non-ionizing radiation cause cancer? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:501-505. [PMID: 27903411 DOI: 10.1016/j.envpol.2016.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/24/2023]
Abstract
This paper attempts to resolve the debate about whether non-ionizing radiation (NIR) can cause cancer-a debate that has been ongoing for decades. The rationale, put forward mostly by physicists and accepted by many health agencies, is that, "since NIR does not have enough energy to dislodge electrons, it is unable to cause cancer." This argument is based on a flawed assumption and uses the model of ionizing radiation (IR) to explain NIR, which is inappropriate. Evidence of free-radical damage has been repeatedly documented among humans, animals, plants and microorganisms for both extremely low frequency (ELF) electromagnetic fields (EMF) and for radio frequency (RF) radiation, neither of which is ionizing. While IR directly damages DNA, NIR interferes with the oxidative repair mechanisms resulting in oxidative stress, damage to cellular components including DNA, and damage to cellular processes leading to cancer. Furthermore, free-radical damage explains the increased cancer risks associated with mobile phone use, occupational exposure to NIR (ELF EMF and RFR), and residential exposure to power lines and RF transmitters including mobile phones, cell phone base stations, broadcast antennas, and radar installations.
Collapse
Affiliation(s)
- Magda Havas
- Trent School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
12
|
Wang LF, Tian DW, Li HJ, Gao YB, Wang CZ, Zhao L, Zuo HY, Dong J, Qiao SM, Zou Y, Xiong L, Zhou HM, Yang YF, Peng RY, Hu XJ. Identification of a Novel Rat NR2B Subunit Gene Promoter Region Variant and Its Association with Microwave-Induced Neuron Impairment. Mol Neurobiol 2015; 53:2100-11. [PMID: 25917873 DOI: 10.1007/s12035-015-9169-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.
Collapse
Affiliation(s)
- Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Da-Wei Tian
- Vestibular Laboratory, Institute of Aviation Medicine, 28 Fucheng Road, Beijing, 100142, China.,Department of Aerospace Medicine Aerospace Biodynamics, The Fourth Military Medical University, 169 Changlexi Road, Xian, 100032, China
| | - Hai-Juan Li
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ya-Bing Gao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Chang-Zhen Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Li Zhao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Hong-Yan Zuo
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ji Dong
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Si-Mo Qiao
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Yong Zou
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Lu Xiong
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Hong-Mei Zhou
- Radiation Protection, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Yue-Feng Yang
- Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Rui-Yun Peng
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Xiang-Jun Hu
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
13
|
Effect of ELF-EMF on antioxidant status and micronuclei in K562 cells and normal lymphocytes. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0335-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe effect of ELF-EMF on DNA through changes in antioxidative enzyme activities has not been sufficiently explored yet. The aim of this study was to determine ELF-EMF effect on antioxidative enzymes in cancer cell line and genotoxic potential on normal human lymphocytes. K562 cells were exposed to 50 Hz ELF-EMF (40 μT, 100 μT; 3 h, 24 h) and spectrophotometric determination of lipid peroxidation and antioxidative enzyme activities was conducted. Genotoxicity of ELF-EMF (50 Hz, 100 μT) was investigated by cytokinesis-block micronucleus assay in a normal human lymphocytes (exposure 24 h and 48 h). Results demonstrated that ELF-EMF did not alter the process of lipid peroxidation and superoxide dismutase activity. Catalase activity was increased only after application of 100 μT EMF for 24 h. Glutathione-S-transferase and -reductase activities were increased. Treatment with 100 μT ELF-EMF (24 h, 48 h) significantly reduced micronuclei incidence, while cell proliferation was significantly increased. Results indicate that 50 Hz ELF-EMF (40 μT, 100 μT) are week stressors which alone cannot generate enough ROS to induce process of lipid peroxidation in cancer cell line but strong enough to induce response of antioxidative system. Furthermore, 100 μT ELF-EMF in human lymphocytes did not exhibit genotoxic potential during 24 h and 48 h treatment, but stimulated cell proliferation.
Collapse
|
14
|
Laurier D, Grosche B, Auvinen A, Clavel J, Cobaleda C, Dehos A, Hornhardt S, Jacob S, Kaatsch P, Kosti O, Kuehni C, Lightfoot T, Spycher B, Van Nieuwenhuyse A, Wakeford R, Ziegelberger G. Childhood leukaemia risks: from unexplained findings near nuclear installations to recommendations for future research. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:R53-R68. [PMID: 24938793 DOI: 10.1088/0952-4746/34/3/r53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent findings related to childhood leukaemia incidence near nuclear installations have raised questions which can be answered neither by current knowledge on radiation risk nor by other established risk factors. In 2012, a workshop was organised on this topic with two objectives: (a) review of results and discussion of methodological limitations of studies near nuclear installations; (b) identification of directions for future research into the causes and pathogenesis of childhood leukaemia. The workshop gathered 42 participants from different disciplines, extending widely outside of the radiation protection field. Regarding the proximity of nuclear installations, the need for continuous surveillance of childhood leukaemia incidence was highlighted, including a better characterisation of the local population. The creation of collaborative working groups was recommended for consistency in methodologies and the possibility of combining data for future analyses. Regarding the causes of childhood leukaemia, major fields of research were discussed (environmental risk factors, genetics, infections, immunity, stem cells, experimental research). The need for multidisciplinary collaboration in developing research activities was underlined, including the prevalence of potential predisposition markers and investigating further the infectious aetiology hypothesis. Animal studies and genetic/epigenetic approaches appear of great interest. Routes for future research were pointed out.
Collapse
Affiliation(s)
- D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, F-92262 Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sidaway GH. Powerline bioactivity - more than magnetism. SPRINGERPLUS 2013; 2:454. [PMID: 24058895 PMCID: PMC3777017 DOI: 10.1186/2193-1801-2-454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/29/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Previous work on the possible public health impact of electricity utilization has mostly considered low frequency electromagnetic fields, particularly those associated with high voltage overhead powerlines, but no generally accepted biological mechanism has been proposed. The present study seeks to expand the area of debate to include airborne electroactivity. FINDINGS From a literature survey it is concluded that there is statistically significant published evidence consistent with the involvement of airborne electroactive agents in the powerline proximity modulation of some cytokine activity. Attention is drawn to overhead line fault associated corona discharge action as a source of potentially bioactive agents deserving careful study in view of the widespread close residential proximity to overhead power distribution lines in many countries. Particular attention is given to the role of electricity access associated faults as a possible explanation for the high childhood leukaemia rates in certain districts of Mexico City. CONCLUSIONS Despite more than 30 years research worldwide there is no generally accepted biological mechanism to explain the adverse health impact of overhead powerline residential proximity. Expanding the area of consideration to include airborne electroactivity may provide the basis for a plausible outline model of such a mechanism. More attention should be given to this research area.
Collapse
|
16
|
Khalil AM, Abu Khadra KM, Aljaberi AM, Gagaa MH, Issa HS. Assessment of oxidant/antioxidant status in saliva of cell phone users. Electromagn Biol Med 2013; 33:92-7. [DOI: 10.3109/15368378.2013.783855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Metayer C, Milne E, Clavel J, Infante-Rivard C, Petridou E, Taylor M, Schüz J, Spector LG, Dockerty JD, Magnani C, Pombo-de-Oliveira MS, Sinnett D, Murphy M, Roman E, Monge P, Ezzat S, Mueller BA, Scheurer ME, Armstrong BK, Birch J, Kaatsch P, Koifman S, Lightfoot T, Bhatti P, Bondy ML, Rudant J, O'Neill K, Miligi L, Dessypris N, Kang AY, Buffler PA. The Childhood Leukemia International Consortium. Cancer Epidemiol 2013; 37:336-47. [PMID: 23403126 DOI: 10.1016/j.canep.2012.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/17/2012] [Accepted: 12/29/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case-control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene-environment interactions. OBJECTIVES The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene-environment interactions and subtype-specific associations through the pooling of data from independent studies. METHODS By September 2012, CLIC included 22 studies (recruitment period: 1962-present) from 12 countries, totaling approximately 31000 cases and 50000 controls. Of these, 19 case-control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child-parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. CONCLUSIONS CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene-environment interactions and associations among specific leukemia subtypes in different ethnic groups.
Collapse
Affiliation(s)
- Catherine Metayer
- University of California, Berkeley, School of Public Health, 1995 University Avenue, Suite 460, Berkeley, CA 94704-1070, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. Int J Hematol 2012; 97:3-19. [DOI: 10.1007/s12185-012-1220-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
|
19
|
Cid MA, Ubeda A, Hernández-Bule ML, Martínez MA, Trillo MÁ. Antagonistic effects of a 50 Hz magnetic field and melatonin in the proliferation and differentiation of hepatocarcinoma cells. Cell Physiol Biochem 2012; 30:1502-16. [PMID: 23235525 DOI: 10.1159/000343338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Epidemiological and experimental evidence exists indicating that exposure to weak, extremely low frequency magnetic fields (ELF - MF) could affect cancer progression. It has been proposed that such hypothetical action could be mediated by MF-induced effects on the cellular response to melatonin (MEL), a potentially oncostatic neurohormone. The present study investigates the response of HepG2 cells to intermittent exposure to a 50 Hz, 10 µT MF, in the presence or absence of MEL at physiological (10 nM) or pharmacological doses (1 µM). METHODS The Trypan blue cell exclusion test, BrdU incorporation and PCNA expression assays were carried out to assess the cellular response in terms of viability and proliferation. In addition, albumin and alpha-fetoprotein, were analyzed as specific hepatocellular differentiation markers. RESULTS The results indicate that the MF exerts significant cytoproliferative and dedifferentiating effects that can be prevented by 10 nM MEL. Conversely, MEL exerts cytostatic and differentiating effects on HepG2 that are abolished by simultaneous exposure to MF. CONCLUSION As a whole, these results support the hypothesis that ELF - MF and MEL exert opposite, mutually counteracting effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- María Antonia Cid
- Dept. Investigación-BEM, Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Martin Blank
- Physiology and Cellular Biophysics, Columbia University,
630 W 168 St, New York, NY 10032, USA
| | - Reba M. Goodman
- Cell Biology & Pathology, Columbia University, 630 W 168 St, New York, 10032, USA
| |
Collapse
|
21
|
The genotoxic effect of radiofrequency waves on mouse brain. J Neurooncol 2011; 106:53-8. [DOI: 10.1007/s11060-011-0644-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
|
22
|
Amirian ES, Scheurer ME, Liu Y, D'Amelio AM, Houlston RS, Etzel CJ, Shete S, Swerdlow AJ, Schoemaker MJ, McKinney PA, Fleming SJ, Muir KR, Lophatananon A, Bondy ML. A novel approach to exploring potential interactions among single-nucleotide polymorphisms of inflammation genes in gliomagenesis: an exploratory case-only study. Cancer Epidemiol Biomarkers Prev 2011; 20:1683-1689. [PMID: 21724854 DOI: 10.1158/1055-9965.epi-11-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. METHODS The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. RESULTS Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. CONCLUSION This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. IMPACT This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology.
Collapse
Affiliation(s)
- E Susan Amirian
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Scheurer
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Anthony M D'Amelio
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Richard S Houlston
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| | - Carol J Etzel
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Anthony J Swerdlow
- Section of Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | - Sarah J Fleming
- Centre for Epidemiology and Biostatistics, University of Leeds, Leeds, UK
| | - Kenneth R Muir
- Health Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Artitaya Lophatananon
- Health Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Melissa L Bondy
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
|
24
|
Abstract
BACKGROUND Previous pooled analyses have reported an association between magnetic fields and childhood leukaemia. We present a pooled analysis based on primary data from studies on residential magnetic fields and childhood leukaemia published after 2000. METHODS Seven studies with a total of 10,865 cases and 12,853 controls were included. The main analysis focused on 24-h magnetic field measurements or calculated fields in residences. RESULTS In the combined results, risk increased with increase in exposure, but the estimates were imprecise. The odds ratios for exposure categories of 0.1-0.2 μT, 0.2-0.3 μT and ≥0.3 μT, compared with <0.1 μT, were 1.07 (95% CI 0.81-1.41), 1.16 (0.69-1.93) and 1.44 (0.88-2.36), respectively. Without the most influential study from Brazil, the odds ratios increased somewhat. An increasing trend was also suggested by a nonparametric analysis conducted using a generalised additive model. CONCLUSIONS Our results are in line with previous pooled analyses showing an association between magnetic fields and childhood leukaemia. Overall, the association is weaker in the most recently conducted studies, but these studies are small and lack methodological improvements needed to resolve the apparent association. We conclude that recent studies on magnetic fields and childhood leukaemia do not alter the previous assessment that magnetic fields are possibly carcinogenic.
Collapse
|
25
|
Markovà E, Malmgren LO, Belyaev IY. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:394-399. [PMID: 20064781 PMCID: PMC2854769 DOI: 10.1289/ehp.0900781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 10/22/2009] [Indexed: 05/26/2023]
Abstract
BACKGROUND It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemias and tumors, including gliomas. OBJECTIVES We studied whether microwaves from mobile telephones of the Global System for Mobile Communication (GSM) and the Universal Global Telecommunications System (UMTS) induce DSBs or affect DSB repair in stem cells. METHODS We analyzed tumor suppressor TP53 binding protein 1 (53BP1) foci that are typically formed at the sites of DSB location (referred to as DNA repair foci) by laser confocal microscopy. RESULTS Microwaves from mobile phones inhibited formation of 53BP1 foci in human primary fibroblasts and mesenchymal stem cells. These data parallel our previous findings for human lymphocytes. Importantly, the same GSM carrier frequency (915 MHz) and UMTS frequency band (1947.4 MHz) were effective for all cell types. Exposure at 905 MHz did not inhibit 53BP1 foci in differentiated cells, either fibroblasts or lymphocytes, whereas some effects were seen in stem cells at 905 MHz. Contrary to fibroblasts, stem cells did not adapt to chronic exposure during 2 weeks. CONCLUSIONS The strongest microwave effects were always observed in stem cells. This result may suggest both significant misbalance in DSB repair and severe stress response. Our findings that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells may be important for cancer risk assessment and indicate that stem cells are the most relevant cellular model for validating safe mobile communication signals.
Collapse
Affiliation(s)
- Eva Markovà
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | - Igor Y. Belyaev
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
26
|
Khurana VG, Teo C, Kundi M, Hardell L, Carlberg M. Cell phones and brain tumors: a review including the long-term epidemiologic data. ACTA ACUST UNITED AC 2009; 72:205-14; discussion 214-5. [DOI: 10.1016/j.surneu.2009.01.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/21/2009] [Indexed: 12/26/2022]
|
27
|
Sharma M, Odenike OM. DNA repair genes, electromagnetic fields and susceptibility to acute leukemia? Leuk Lymphoma 2009; 49:2233-4. [DOI: 10.1080/10428190802573123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. ACTA ACUST UNITED AC 2009; 16:89-102. [PMID: 19285841 DOI: 10.1016/j.pathophys.2008.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/16/2008] [Accepted: 11/16/2008] [Indexed: 01/23/2023]
Abstract
101 publications are exploited which have studied genotoxicity of radiofrequency electromagnetic fields (RF-EMF) in vivo and in vitro. Of these 49 report a genotoxic effect and 42 do not. In addition, 8 studies failed to detect an influence on the genetic material, but showed that RF-EMF enhanced the genotoxic action of other chemical or physical agents. The controversial results may in part be explained by the different cellular systems. Moreover, inconsistencies may depend from the variety of analytical methods being used, which differ considerably with respect to sensitivity and specificity. Taking altogether there is ample evidence that RF-EMF can alter the genetic material of exposed cells in vivo and in vitro and in more than one way. This genotoxic action may be mediated by microthermal effects in cellular structures, formation of free radicals, or an interaction with DNA-repair mechanisms.
Collapse
Affiliation(s)
- Hugo W Ruediger
- Division of Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Berggasse 4/33, 1090 Vienna, Austria
| |
Collapse
|
29
|
Blackman C. Cell phone radiation: Evidence from ELF and RF studies supporting more inclusive risk identification and assessment. PATHOPHYSIOLOGY 2009; 16:205-16. [PMID: 19264460 DOI: 10.1016/j.pathophys.2009.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022] Open
Abstract
Many national and international exposure standards for maximum radiation exposure from the use of cell phone and other similar portable devices are ultimately based on the production of heat particularly in regions of the head, that is, thermal effects (TE). The recent elevation in some countries of the allowable exposure, that is, averaging the exposure that occurs in a 6min period over 10g of tissue rather than over 1g allows for greater heating in small portions of the 10-g volume compared to the exposure that would be allowed averaged over 1-g volume. There is concern that 'hot' spots, that is, momentary higher intensities, could occur in portions of the 10-g tissue piece, might have adverse consequences, particularly in brain tissue. There is another concern about exposure to cell phone radiation that has been virtually ignored except for the National Council of Radiation Protection and Measurements (NCRP) advice given in a publication in 1986 [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.]. This NCRP review and guidance explicitly acknowledge the existence of non-thermal effects (NTE), and included provisions for reduced maximum-allowable limits should certain radiation characteristics occur during the exposure. If we are to take most current national and international exposure standards as completely protective of thermal injury for acute exposure only (6min time period) then the recent evidence from epidemiological studies associating increases in brain and head cancers with increased cell phone use per day and per year over 8-12 years, raises concerns about the possible health consequences on NTE first acknowledged in the NCRP 1986 report [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.]. This paper will review some of the salient evidence that demonstrates the existence of NTE and the exposure complexities that must be considered and understood to provide appropriate, more thorough evaluation and guidance for future studies and for assessment of potential health consequences. Unfortunately, this paper is necessary because most national and international reviews of the research area since the 1986 report [National Council for Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields, National Council for Radiation Protection and Measurements, 1986, 400 pp.] have not included scientists with expertise in NTE, or given appropriate attention to their requests to include NTE in the establishment of public-health-based radiation exposure standards. Thus, those standards are limited because they are not comprehensive.
Collapse
|