Identification of a novel peptide derived from the M-phase phosphoprotein 11 (MPP11) leukemic antigen recognized by human CD8+ cytotoxic T lymphocytes.
Hematol Oncol Stem Cell Ther 2012;
3:24-33. [PMID:
20231810 DOI:
10.1016/s1658-3876(10)50053-0]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES
There is an urgent need for the development of leukemia-targeted immunotherapeutic approaches using defined leukemia-associated antigens that are preferentially expressed by most leukemia subtypes and absent or minimally expressed in vital tissues. M-phase phosphoprotein 11 protein (MPP11) is extensively overexpressed in leukemic cells and therefore is considered an attractive target for leukemia T cell therapy. We sought to identify potential CD8+ cytotoxic T lymphocytes that specifically recognised peptides derived from the MPP11 antigen.
METHODS
A computer-based epitope prediction program SYFPEITHI, was used to predict peptides from the MPP11 protein that bind to the most common HLA- A*0201 molecule. Peptide binding capacity to the HLA-A*0201 molecule was measured using the T2 TAP-deficient, HLA-A*0201-positive cell line. Dendritic cells were pulsed with peptides and then used to generate CD8+ cytotoxic T lymphocytes (CTL). The CML leukemic cell line K562-A2.1 naturally expressing the MPP11 antigen and engineered to express the HLA-A*0201 molecule was used as the target cell.
RESULTS
We have identified a potential HLA-A*0201 binding epitope (STLCQVEPV) named MPP-4 derived from the MPP11 protein which was used to generate a CTL line. Interestingly, this CTL line specifically recognized peptide-loaded target cells in both ELISPOT and cytotoxic assays. Importantly, this CTL line exerted a cytotoxic effect towards the CML leukemic cell line K562-A2.1.
CONCLUSION
This is the first study to describe a novel epitope derived from the MPP11 antigen that has been recognized by human CD8+ CTL.
Collapse