1
|
Cingöz A, Ozyerli-Goknar E, Morova T, Seker-Polat F, Esai Selvan M, Gümüş ZH, Bhere D, Shah K, Solaroglu I, Bagci-Onder T. Generation of TRAIL-resistant cell line models reveals distinct adaptive mechanisms for acquired resistance and re-sensitization. Oncogene 2021; 40:3201-3216. [PMID: 33767436 DOI: 10.1038/s41388-021-01697-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell-specific apoptosis, making it a prime therapeutic candidate. However, many tumor cells are either innately TRAIL-resistant, or they acquire resistance with adaptive mechanisms that remain poorly understood. In this study, we generated acquired TRAIL resistance models using multiple glioblastoma (GBM) cell lines to assess the molecular alterations in the TRAIL-resistant state. We selected TRAIL-resistant cells through chronic and long-term TRAIL exposure and noted that they showed persistent resistance both in vitro and in vivo. Among known TRAIL-sensitizers, proteosome inhibitor Bortezomib, but not HDAC inhibitor MS-275, was effective in overcoming resistance in all cell models. This was partly achieved through upregulating death receptors and pro-apoptotic proteins, and downregulating major anti-apoptotic members, Bcl-2 and Bcl-xL. We showed that CRISPR/Cas9 mediated silencing of DR5 could block Bortezomib-mediated re-sensitization, demonstrating its critical role. While overexpression of Bcl-2 or Bcl-xL was sufficient to confer resistance to TRAIL-sensitive cells, it failed to override Bortezomib-mediated re-sensitization. With RNA sequencing in multiple paired TRAIL-sensitive and TRAIL-resistant cells, we identified major alterations in inflammatory signaling, particularly in the NF-κB pathway. Inhibiting NF-κB substantially sensitized the most resistant cells to TRAIL, however, the sensitization effect was not as great as what was observed with Bortezomib. Together, our findings provide new models of acquired TRAIL resistance, which will provide essential tools to gain further insight into the heterogeneous therapy responses within GBM tumors. Additionally, these findings emphasize the critical importance of combining proteasome inhibitors and pro-apoptotic ligands to overcome acquired resistance.
Collapse
Affiliation(s)
- Ahmet Cingöz
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep Hülya Gümüş
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ihsan Solaroglu
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Neurosurgery, Koç University School of Medicine, Istanbul, 34010, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey.
- Koç University School of Medicine, Istanbul, 34450, Turkey.
| |
Collapse
|
2
|
Joudeh J, Claxton D. Obatoclax mesylate : pharmacology and potential for therapy of hematological neoplasms. Expert Opin Investig Drugs 2012; 21:363-73. [PMID: 22324354 DOI: 10.1517/13543784.2012.652302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Augmentation and acceleration of apoptosis for cancer therapy are logical therapeutic strategies given the increasing body of data suggesting the dysregulation of control of cell death in many neoplasms. Apoptosis is particularly well studied in hematological neoplasms, thus these varied diseases present opportunities for pro-apoptotic drug development both as single agents and in combination with established therapies. Accordingly, several agents targeting function of anti-apoptotic Bcl-2 family members have entered clinical trials in the last decade and are discussed. AREAS COVERED The pan Bcl-2 family member BH3 domain mimetic obatoclax (GX15-070) is currently under clinical evaluation in solid tumors and hematological neoplasms. This agent offers the attractive property of uniformly inhibiting all of the anti-apoptotic members of the Bcl-2 protein family. Its chemistry and preclinical development and activity are reviewed. Pharmacology, pharmacodynamics, drug resistance and clinical use of this agent in leukemias and lymphomas are discussed. The prospects for obatoclax in changing clinical practice are addressed. EXPERT OPINION Obatoclax may not prove to have dramatic single agent activity for hematological neoplasms. It seems more likely that its activity will be manifest in combination therapy with other agents, particularly cytotoxic chemotherapies. Results of ongoing studies are awaited.
Collapse
Affiliation(s)
- Jamal Joudeh
- Department of Medicine, Hematology/Oncology Division, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|