1
|
Navrkalova V, Plevova K, Radova L, Porc J, Pal K, Malcikova J, Pavlova S, Doubek M, Panovska A, Kotaskova J, Pospisilova S. Integrative NGS testing reveals clonal dynamics of adverse genomic defects contributing to a natural progression in treatment-naïve CLL patients. Br J Haematol 2024; 204:240-249. [PMID: 38062779 DOI: 10.1111/bjh.19191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024]
Abstract
Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Porc
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Pérez‐Carretero C, Hernández‐Sánchez M, González T, Quijada‐Álamo M, Martín‐Izquierdo M, Santos‐Mínguez S, Miguel‐García C, Vidal M, García‐De‐Coca A, Galende J, Pardal E, Aguilar C, Vargas‐Pabón M, Dávila J, Gascón‐Y‐Marín I, Hernández‐Rivas J, Benito R, Hernández‐Rivas J, Rodríguez‐Vicente A. TRAF3 alterations are frequent in del-3'IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features. Am J Hematol 2022; 97:903-914. [PMID: 35472012 DOI: 10.1002/ajh.26578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/08/2022]
Abstract
Interstitial 14q32 deletions involving IGH gene are infrequent events in chronic lymphocytic leukemia (CLL), affecting less than 5% of patients. To date, little is known about their clinical impact and molecular underpinnings, and its mutational landscape is currently unknown. In this work, a total of 871 CLLs were tested for the IGH break-apart probe, and 54 (6.2%) had a 300 kb deletion of 3'IGH (del-3'IGH CLLs), which contributed to a shorter time to first treatment (TFT). The mutational analysis by next-generation sequencing of 317 untreated CLLs (54 del-3'IGH and 263 as the control group) showed high mutational frequencies of NOTCH1 (30%), ATM (20%), genes involved in the RAS signaling pathway (BRAF, KRAS, NRAS, and MAP2K1) (15%), and TRAF3 (13%) within del-3'IGH CLLs. Notably, the incidence of TRAF3 mutations was significantly higher in del-3'IGH CLLs than in the control group (p < .001). Copy number analysis also revealed that TRAF3 loss was highly enriched in CLLs with 14q deletion (p < .001), indicating a complete biallelic inactivation of this gene through deletion and mutation. Interestingly, the presence of mutations in the aforementioned genes negatively refined the prognosis of del-3'IGH CLLs in terms of overall survival (NOTCH1, ATM, and RAS signaling pathway genes) and TFT (TRAF3). Furthermore, TRAF3 biallelic inactivation constituted an independent risk factor for TFT in the entire CLL cohort. Altogether, our work demonstrates the distinct genetic landscape of del-3'IGH CLL with multiple molecular pathways affected, characterized by a TRAF3 biallelic inactivation that contributes to a marked poor outcome in this subgroup of patients.
Collapse
Affiliation(s)
- Claudia Pérez‐Carretero
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - María Hernández‐Sánchez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Teresa González
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Miguel Quijada‐Álamo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Marta Martín‐Izquierdo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Sandra Santos‐Mínguez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Cristina Miguel‐García
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | | | | | | | - Emilia Pardal
- Servicio de Hematología Hospital Virgen del Puerto Plasencia Spain
| | - Carlos Aguilar
- Servicio de Hematología, Complejo Hospitalario de Soria Soria Spain
| | | | - Julio Dávila
- Servicio de Hematología Hospital Nuestra Señora de Sonsoles Ávila Spain
| | - Isabel Gascón‐Y‐Marín
- Servicio de Hematología, Hospital Universitario Infanta Leonor Universidad Complutense Madrid Spain
| | | | - Rocío Benito
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Jesús‐María Hernández‐Rivas
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Ana‐Eugenia Rodríguez‐Vicente
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| |
Collapse
|
3
|
Baghaei Vaji F, Boroumand Nasr A, Rezvani A, Ayatollahi H, Goudarzi S, Lavasani S, Bagheri R. Prognostic significance of ATM mutations in chronic lymphocytic leukemia: A meta-analysis. Leuk Res 2021; 111:106729. [PMID: 34735935 DOI: 10.1016/j.leukres.2021.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The ATM protein acts as an essential part of the signal transduction pathway upstream of p53 which activates following induction of DNA double-strand breaks (DSBs) and leads to transcriptional proapoptotic genes activation that synchronizes DNA repair. AIM Several studies have assessed the relationship between ATM mutations and the clinical prognosis in patients with chronic lymphocytic leukemia (CLL). However, its prognostic value has not yet been fully clarified. Hence, we aimed this meta-analysis to investigate the prognostic effect of ATM mutations in patients with CLL. METHOD The selected clinical studies were extracted from various electronic databases such as PubMed, EMBASE, the Cochrane Library, and Web of Science. In our meta-analysis, Hazard Ratio (HRs) and 95 % confidence interval (CI) for overall survival (OS) were chosen to estimate the prognostic impact of ATM mutations and to compare ATM mutations to those with wild-type. RESULTS A total of 1299 patients from seven studies were collected. The pooled HRs for OS recommended that patients with CLL had a poorer prognosis HR = 1.24 (95 % CI: 0.97-1.59). The incidence of ATM mutations was found 15.8 % in patients with CLL. Begg's and Egger's tests did not show any significant bias between studies. CONCLUSION In conclusion, this meta-analysis indicated that ATM mutations were significantly associated with adverse prognostic effect in patients with CLL. However, a randomized controlled prospective study with a large number of patients with different types of ATM mutations is required to assert these results.
Collapse
Affiliation(s)
| | - Arash Boroumand Nasr
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Ali Rezvani
- Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Goudarzi
- Department of Hematology and Blood Banking, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Lavasani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Bagheri
- Department of Hematology and Blood Banking, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Quijada‐Álamo M, Pérez‐Carretero C, Hernández‐Sánchez M, Rodríguez‐Vicente A, Herrero A, Hernández‐Sánchez J, Martín‐Izquierdo M, Santos‐Mínguez S, del Rey M, González T, Rubio‐Martínez A, García de Coca A, Dávila‐Valls J, Hernández‐Rivas J, Parker H, Strefford JC, Benito R, Ordóñez J, Hernández‐Rivas J. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. Clin Transl Med 2021; 11:e304. [PMID: 33634999 PMCID: PMC7862176 DOI: 10.1002/ctm2.304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several genetic alterations have been identified as driver events in chronic lymphocytic leukemia (CLL) pathogenesis and oncogenic evolution. Concurrent driver alterations usually coexist within the same tumoral clone, but how the cooperation of multiple genomic abnormalities contributes to disease progression remains poorly understood. Specifically, the biological and clinical consequences of concurrent high-risk alterations such as del(11q)/ATM-mutations and del(17p)/TP53-mutations have not been established. METHODS We integrated next-generation sequencing (NGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 techniques to characterize the in vitro and in vivo effects of concurrent monoallelic or biallelic ATM and/or TP53 alterations in CLL prognosis, clonal evolution, and therapy response. RESULTS Targeted sequencing analysis of the co-occurrence of high-risk alterations in 271 CLLs revealed that biallelic inactivation of both ATM and TP53 was mutually exclusive, whereas monoallelic del(11q) and TP53 alterations significantly co-occurred in a subset of CLL patients with a highly adverse clinical outcome. We determined the biological effects of combined del(11q), ATM and/or TP53 mutations in CRISPR/Cas9-edited CLL cell lines. Our results showed that the combination of monoallelic del(11q) and TP53 mutations in CLL cells led to a clonal advantage in vitro and in in vivo clonal competition experiments, whereas CLL cells harboring biallelic ATM and TP53 loss failed to compete in in vivo xenotransplants. Furthermore, we demonstrated that CLL cell lines harboring del(11q) and TP53 mutations show only partial responses to B cell receptor signaling inhibitors, but may potentially benefit from ATR inhibition. CONCLUSIONS Our work highlights that combined monoallelic del(11q) and TP53 alterations coordinately contribute to clonal advantage and shorter overall survival in CLL.
Collapse
Affiliation(s)
- Miguel Quijada‐Álamo
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Claudia Pérez‐Carretero
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - María Hernández‐Sánchez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Ana‐Eugenia Rodríguez‐Vicente
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Ana‐Belén Herrero
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Jesús‐María Hernández‐Sánchez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Marta Martín‐Izquierdo
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Sandra Santos‐Mínguez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Mónica del Rey
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Teresa González
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | | | | | | | | | - Helen Parker
- School of Cancer SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUK
| | | | - Rocío Benito
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - José‐Luis Ordóñez
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
| | - Jesús‐María Hernández‐Rivas
- Cancer Research CenterUniversity of Salamanca, IBSAL, IBMCC, CSICSalamancaSpain
- Department of HematologyUniversity Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| |
Collapse
|
5
|
Viswanathan K, Roboz G, Chadburn A, Mathew S. Chronic Myelogenous Leukemia Diagnosed in the Setting of Untreated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Int J Surg Pathol 2019; 28:216-224. [PMID: 31544558 DOI: 10.1177/1066896919876704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic myeloid leukemia (CML) is rarely reported to occur in treated chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). In this article, we report a woman in her 70s, diagnosed with CLL/SLL in 2000, untreated, who subsequently presented 12 years later with de novo CML, BCR-ABL1+. Her IGHV mutated CLL/SLL based on the initial sample in our laboratory showed homozygous and heterozygous 13q14.3 deletions, whereas her CML, at presentation, showed a 46,XX,t(9;22)(q34;q11.2)[7]/46,XX[18] karyotype with a p190 BCR-ABL1 transcript. The tumor burden of each clone varied with treatment, including when treated with dasatinib, used to target both clones. In addition, the cytogenetic abnormalities evolved over time and treatments and included acquisition of an extra chromosome 8 in the CML clone and a novel K1992T ATM missense mutation (47% allele frequency) in the CLL/SLL clone. The patient's last bone marrow biopsy, 5 years after her CML diagnosis and 17 years after the CLL/SLL diagnosis, showed residual CML with extensive involvement by CLL/SLL (80%). Cytogenetic studies showed a 46,XX karyotype, while FISH identified 13q14.3 deletion and the BCR-ABL1 translocation in the CLL/SLL and CML clones, respectively. To date, this is the fourth case of concurrent CML, BCR-ABL1+ arising in untreated CLL/SLL. Here we show dynamic variation in the size of the 2 clonal processes reflecting the variable responsiveness to specific therapies. In addition to the unusual BCR-ABL1+ p190 transcript in the patient's CML, a novel ATM K1992T mutation was identified in the CLL/SLL population.
Collapse
Affiliation(s)
| | - Gail Roboz
- NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Amy Chadburn
- NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Susan Mathew
- NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Mareckova A, Malcikova J, Tom N, Pal K, Radova L, Salek D, Janikova A, Moulis M, Smardova J, Kren L, Mayer J, Trbusek M. ATM and TP53 mutations show mutual exclusivity but distinct clinical impact in mantle cell lymphoma patients. Leuk Lymphoma 2019; 60:1420-1428. [DOI: 10.1080/10428194.2018.1542144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrea Mareckova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - David Salek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Mojmir Moulis
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Smardova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Mina A, Sandoval Sus J, Sleiman E, Pinilla-Ibarz J, Awan FT, Kharfan-Dabaja MA. Using prognostic models in CLL to personalize approach to clinical care: Are we there yet? Blood Rev 2017; 32:159-166. [PMID: 29122300 DOI: 10.1016/j.blre.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/14/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023]
Abstract
Four decades ago, two staging systems were developed to help stratify CLL into different prognostic categories. These systems, the Rai and the Binet staging, depended entirely on abnormal exam findings and evidence of anemia and thrombocytopenia. Better understanding of biologic, genetic, and molecular characteristics of CLL have contributed to better appreciating its clinical heterogeneity. New prognostic models, the GCLLSG prognostic index and the CLL-IPI, emerged. They incorporate biologic and genetic information related to CLL and are capable of predicting survival outcomes and cases anticipated to need therapy earlier in the disease course. Accordingly, these newer models are helping develop better informed surveillance strategies and ultimately tailor treatment intensity according to presence (or lack thereof) of certain prognostic markers. This represents a step towards personalizing care of CLL patients. We anticipate that as more prognostic factors continue to be identified, the GCLLSG prognostic index and CLL-IPI models will undergo further revisions.
Collapse
Affiliation(s)
- Alain Mina
- Dept. of Internal Medicine, Kansas University Medical Ctr, Kansas City, KS, USA
| | | | - Elsa Sleiman
- Faculty of Medicine, American Univ. of Beirut, Beirut, Lebanon
| | - Javier Pinilla-Ibarz
- Dept. of Malignant Hematology, Moffitt Cancer Ctr, Tampa, FL, USA; Department of Oncologic Sciences, Moffitt Cancer Ctr, Univ. of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Farrukh T Awan
- Div. of Hematology, Dept. of Internal Medicine, The Ohio State Univ. Comprehensive Cancer Ctr, Columbus, OH, USA
| | - Mohamed A Kharfan-Dabaja
- Department of Oncologic Sciences, Moffitt Cancer Ctr, Univ. of South Florida Morsani College of Medicine, Tampa, FL, USA; Dept. of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Ctr, Tampa, FL, USA.
| |
Collapse
|