1
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
2
|
Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 2021; 35:2771-2783. [PMID: 34262132 DOI: 10.1038/s41375-021-01339-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Liquid biopsies-a source of circulating cell-free nucleic acids, proteins and extracellular vesicles-are currently being explored for the quantitative and qualitative characterisation of the tumour genome and as a mode of non-invasive therapeutic monitoring in cancer. Emerging data suggest that liquid biopsies might offer a potentially simple, non-invasive, repeatable strategy for diagnosis, prognostication and therapeutic decision making in a genetically heterogeneous disease like multiple myeloma (MM), with particular applicability in subsets of patients where conventional markers of disease burden may be less informative. In this review, we describe the emerging utility of the evaluation of circulating tumour DNA, extracellular RNA, cell-free proteins and metabolites and extracellular vesicles in MM.
Collapse
|
3
|
Ho M, Bianchi G, Anderson KC. Proteomics-inspired precision medicine for treating and understanding multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 5:67-85. [PMID: 34414281 DOI: 10.1080/23808993.2020.1732205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Remarkable progress in molecular characterization methods has led to significant improvements in how we manage multiple myeloma (MM). The introduction of novel therapies has led to significant improvements in overall survival over the past 10 years. However, MM remains incurable and treatment choice is largely based on outdated risk-adaptive strategies that do not factor in improved treatment outcomes in the context of modern therapies. Areas covered This review discusses current risk-adaptive strategies in MM and the clinical application of proteomics in the monitoring of treatment response, disease progression, and minimal residual disease (MRD). We also discuss promising biomarkers of disease progression, treatment response, and chemoresistance. Finally, we will discuss an immunomics-based approach to monoclonal antibody (mAb), vaccine, and CAR-T cell development. Expert opinion It is an exciting era in oncology with basic scientific knowledge translating in novel therapeutic approaches to improve patient outcomes. With the advent of effective immunotherapies and targeted therapies, it has become crucial to identify biomarkers to aid in the stratification of patients based on anticipated sensitivity to chemotherapy. As a paradigm of diseases highly dependent on protein homeostasis, multiple myeloma provides the perfect opportunity to investigate the use of proteomics to aid in precision medicine.
Collapse
Affiliation(s)
- Matthew Ho
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Giada Bianchi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Jung O, Beauvais DM, Adams KM, Rapraeger AC. VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. J Cell Sci 2019; 132:jcs.232645. [PMID: 31562188 DOI: 10.1242/jcs.232645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
When targeted by the tumor-promoting enzyme heparanase, cleaved and shed syndecan-1 (Sdc1) then couples VEGFR2 (also known as KDR) to VLA-4, activating VEGFR2 and the directed migration of myeloma cells. But how VEGFR2 activates VLA-4-mediated motility has remained unknown. We now report that VEGFR2 causes PKA-mediated phosphorylation of VLA-4 on S988, an event known to stimulate tumor metastasis while suppressing cytotoxic immune cells. A key partner in this mechanism is the chemokine receptor CXCR4, a well-known mediator of cell motility in response to gradients of the chemokine SDF-1 (also known as CXCL12). The entire machinery necessary to phosphorylate VLA-4, consisting of CXCR4, AC7 (also known as ADCY7) and PKA, is constitutively associated with VEGFR2 and is localized to the integrin by Sdc1. VEGFR2 carries out the novel phosphorylation of Y135 within the DRY microswitch of CXCR4, sequentially activating Gαiβγ, AC7 and PKA, which phosphorylates S988 on the integrin. This mechanism is blocked by a syndecan-mimetic peptide (SSTNVEGFR2), which, by preventing VEGFR2 linkage to VLA-4, arrests tumor cell migration that depends on VLA-4 phosphorylation and stimulates the LFA-1-mediated migration of cytotoxic leukocytes.
Collapse
Affiliation(s)
- Oisun Jung
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.,Graduate Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - DeannaLee M Beauvais
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Kristin M Adams
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Alan C Rapraeger
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA .,Graduate Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
5
|
Späth F, Wibom C, Krop EJM, Santamaria AI, Johansson AS, Bergdahl IA, Hultdin J, Vermeulen R, Melin B. Immune marker changes and risk of multiple myeloma: a nested case-control study using repeated pre-diagnostic blood samples. Haematologica 2019; 104:2456-2464. [PMID: 30948485 PMCID: PMC6959165 DOI: 10.3324/haematol.2019.216895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
Biomarkers reliably predicting progression to multiple myeloma (MM) are lacking. Myeloma risk has been associated with low blood levels of monocyte chemotactic protein-3 (MCP-3), macrophage inflammatory protein-1 alpha (MIP-1α), vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), fractalkine, and transforming growth factor-alpha (TGF-α). In this study, we aimed to replicate these findings and study the individual dynamics of each marker in a prospective longitudinal cohort, thereby examining their potential as markers of myeloma progression. For this purpose, we identified 65 myeloma cases and 65 matched cancer-free controls each with two donated blood samples within the Northern Sweden Health and Disease Study. The first and repeated samples from myeloma cases were donated at a median 13 and 4 years, respectively, before the myeloma was diagnosed. Known risk factors for progression were determined by protein-, and immunofixation electrophoresis, and free light chain assays. We observed lower levels of MCP-3, VEGF, FGF-2, and TGF-α in myeloma patients than in controls, consistent with previous data. We also observed that these markers decreased among future myeloma patients while remaining stable in controls. Decreasing trajectories were noted for TGF-α (P=2.5 × 10−4) indicating progression to MM. Investigating this, we found that low levels of TGF-α assessed at the time of the repeated sample were independently associated with risk of progression in a multivariable model (hazard ratio = 3.5; P=0.003). TGF-α can potentially improve early detection of MM.
Collapse
Affiliation(s)
- Florentin Späth
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | - Esmeralda J M Krop
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | | | | | | | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Sweden
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| |
Collapse
|
6
|
Dencker M, Björgell O, Hlebowicz J. Effect of food intake on 92 oncological biomarkers by the Proseek Oncology II panel. BMC Res Notes 2019; 12:199. [PMID: 30940215 PMCID: PMC6446403 DOI: 10.1186/s13104-019-4237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluates the effect of food intake on 92 oncological biomarkers to evaluate whether the timing of blood sampling could be relevant. Twenty-two healthy subjects were investigated. A total of 92 biomarkers were measured before a standardised meal as well as 30 and 120 min afterwards with the Proseek Multiplex Oncology II kit. Results The levels of 6 biomarkers decreased significantly (P < 0.001) 30 min after food intake, and 4 biomarkers remained decreased (P < 0.001) 120 min after food intake. One biomarker was significantly increased (P < 0.001) at both 30 and 120 min after food intake. Some changes were less than 10%. Those biomarkers that showed a difference of more than 10% include: Granzyme H (13%), Methionine aminopeptidase 2 (14%), Secretory carrier-associated membrane protein 3 (39%), FAS-associated death domain protein (41%), and Pancreatic prohormone (79%). This study shows that food intake has a very modest effect on 92 different oncological biomarkers. Trial registration National Library of Medicine trial registration number NCT01027507 (retrospectively registered on December 8, 2009)
Collapse
Affiliation(s)
- Magnus Dencker
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| | - Ola Björgell
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Joanna Hlebowicz
- Department of Clinical Sciences, Division of Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Rasche L, Kortüm KM, Raab MS, Weinhold N. The Impact of Tumor Heterogeneity on Diagnostics and Novel Therapeutic Strategies in Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20051248. [PMID: 30871078 PMCID: PMC6429294 DOI: 10.3390/ijms20051248] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022] Open
Abstract
Myeloma is characterized by extensive inter-patient genomic heterogeneity due to multiple different initiating events. A recent multi-region sequencing study demonstrated spatial differences, with progression events, such as TP53 mutations, frequently being restricted to focal lesions. In this review article, we describe the clinical impact of these two types of tumor heterogeneity. Target mutations are often dominant at one site but absent at other sites, which poses a significant challenge to personalized therapy in myeloma. The same holds true for high-risk subclones, which can be locally restricted, and as such not detectable at the iliac crest, which is the usual sampling site. Imaging can improve current risk classifiers and monitoring of residual disease, but does not allow for deciphering the molecular characteristics of tumor clones. In the era of novel immunotherapies, the clinical impact of heterogeneity certainly needs to be re-defined. Yet, preliminary observations indicate an ongoing impact of spatial heterogeneity on the efficacy of monoclonal antibodies. In conclusion, we recommend combining molecular tests with imaging to improve risk prediction and monitoring of residual disease. Overcoming intra-tumor heterogeneity is the prerequisite for curing myeloma. Novel immunotherapies are promising but research addressing their impact on the spatial clonal architecture is highly warranted.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, 97080 Würzburg, Germany.
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - K Martin Kortüm
- Department of Internal Medicine 2, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Marc S Raab
- Department of Internal Medicine V, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Niels Weinhold
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Internal Medicine V, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|