1
|
Li Q, Fu T, Wei N, Wang Q, Zhang X. Bmi-1 promotes the proliferation, migration and invasion, and inhibits cell apoptosis of human retinoblastoma cells via RKIP. Sci Rep 2024; 14:14544. [PMID: 38914697 PMCID: PMC11196667 DOI: 10.1038/s41598-024-65011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Retinoblastoma is one of the most common ocular malignancies in children. Bmi-1, a member of the Polycomb group family of transcriptional repressors, is expressed in a variety of tumors. The purpose of our study was to explore the role of Bmi-1 in retinoblastoma. RT-qPCR and western blot were used for calculating the mRNA and protein levels of Bmi-1 and RKIP. MTT, Wound healing and Transwell assays were performed to measure the proliferation, migration and invasion in retinoblastoma cells. Cell apoptosis was detected by flow cytometry. The volume and mass of transplanted tumors were detected in nude mice. Bmi-1 was over expressed, and RKIP was low expressed in retinoblastoma cells. Bmi-1 promoted cell proliferation, migration and invasion and suppressed cell apoptosis of Y79 and SO-RB50 cells. Downregulation of Bmi-1 and overexpression of RKIP inhibited cell proliferation, migration and invasion, and increased cell apoptosis. The functions of Bmi-1 knockdown on retinoblastoma cells were blocked by RKIP knockdown, but promoted by RKIP. Down-regulated Bmi-1 inhibited xenograft tumor growth, and RKIP exacerbated this inhibitory effect. Bmi-1 served as a potential therapeutic target for improving the efficacy of clinical treatment in retinoblastoma. All the findings revealed the functions of Bmi-1/RKIP axis in retinoblastoma tumorigenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Te Fu
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Ning Wei
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China.
| |
Collapse
|
2
|
Baritaki S, Zaravinos A. Cross-Talks between RKIP and YY1 through a Multilevel Bioinformatics Pan-Cancer Analysis. Cancers (Basel) 2023; 15:4932. [PMID: 37894300 PMCID: PMC10605344 DOI: 10.3390/cancers15204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies suggest that PEBP1 (also known as RKIP) and YY1, despite having distinct molecular functions, may interact and mutually influence each other's activity. They exhibit reciprocal control over each other's expression through regulatory loops, prompting the hypothesis that their interplay could be pivotal in cancer advancement and resistance to drugs. To delve into this interplay's functional characteristics, we conducted a comprehensive analysis using bioinformatics tools across a range of cancers. Our results confirm the association between elevated YY1 mRNA levels and varying survival outcomes in diverse tumors. Furthermore, we observed differing degrees of inhibitory or activating effects of these two genes in apoptosis, cell cycle, DNA damage, and other cancer pathways, along with correlations between their mRNA expression and immune infiltration. Additionally, YY1/PEBP1 expression and methylation displayed connections with genomic alterations across different cancer types. Notably, we uncovered links between the two genes and different indicators of immunosuppression, such as immune checkpoint blockade response and T-cell dysfunction/exclusion levels, across different patient groups. Overall, our findings underscore the significant role of the interplay between YY1 and PEBP1 in cancer progression, influencing genomic changes, tumor immunity, or the tumor microenvironment. Additionally, these two gene products appear to impact the sensitivity of anticancer drugs, opening new avenues for cancer therapy.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|
3
|
Li Q, Gu Y, Gao X, Guo X, Huang C, Liu P, Hu G, Li G, Fang W, Mai W, Wu C, Xu Z, Huang F, Liu P. Preparation of polyclonal antibody against phosphatidylethanolamine binding protein 1 recombinant protein and its functional verification in pulmonary hypertension syndrome in broilers. Int J Biol Macromol 2022; 213:19-26. [DOI: 10.1016/j.ijbiomac.2022.05.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022]
|
4
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
5
|
Cheng J, Lucas PC, McAllister-Lucas LM. Canonical and Non-Canonical Roles of GRK2 in Lymphocytes. Cells 2021; 10:cells10020307. [PMID: 33546162 PMCID: PMC7913175 DOI: 10.3390/cells10020307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is emerging as a key integrative signaling node in a variety of biological processes ranging from cell growth and proliferation to migration and chemotaxis. As such, GRK2 is now implicated as playing a role in the molecular pathogenesis of a broad group of diseases including heart failure, cancer, depression, neurodegenerative disease, and others. In addition to its long-known canonical role in the phosphorylation and desensitization of G protein-coupled receptors (GPCRs), recent studies have shown that GRK2 also modulates a diverse array of other molecular processes via newly identified GRK2 kinase substrates and via a growing number of protein-protein interaction binding partners. GRK2 belongs to the 7-member GRK family. It is a multidomain protein containing a specific N-terminal region (referred to as αN), followed by a regulator of G protein signaling homology (RH) domain, an AGC (Protein kinase A, G, C serine/threonine kinase family) kinase domain, and a C-terminal pleckstrin homology (PH) domain. GPCRs mediate the activity of many regulators of the immune system such as chemokines and leukotrienes, and thus GRK proteins may play key roles in modulating the lymphocyte response to these factors. As one of the predominant GRK family members expressed in immune cells, GRK2's canonical and noncanonical actions play an especially significant role in normal immune cell function as well as in the development and progression of disorders of the immune system. This review summarizes our current state of knowledge of the roles of GRK2 in lymphocytes. We highlight the diverse functions of GRK2 and discuss how ongoing investigation of GRK2 in lymphocytes may inform the development of new therapies for diseases associated with lymphocyte dysregulation.
Collapse
Affiliation(s)
- Jing Cheng
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- Correspondence:
| | - Peter C. Lucas
- Divisions of Molecular Genomic Pathology and Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Linda M. McAllister-Lucas
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
6
|
IBL-202 is synergistic with venetoclax in CLL under in vitro conditions that mimic the tumor microenvironment. Blood Adv 2020; 4:5093-5106. [PMID: 33085757 DOI: 10.1182/bloodadvances.2019001369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/06/2020] [Indexed: 10/23/2022] Open
Abstract
The B-cell receptor signaling pathway and dysregulation of the Bcl-2 family of proteins play crucial roles in the pathogenesis of chronic lymphocytic leukemia (CLL). Despite significant advances in the treatment of the disease, relapse and drug resistance are not uncommon. In the current study, we investigated the dual PI3/PIM kinase inhibitor IBL-202 in combination with venetoclax as a treatment option for CLL using both primary CLL cells and TP53-deficient OSU-CLL cells generated using the CRISPR-Cas9 system. IBL-202 and venetoclax were highly synergistic against primary CLL cells cocultured with CD40L fibroblasts (combination index [CI], 0.4, at a fractional effect of 0.9) and TP53-knockout (KO) OSU-CLL cells (CI, 0.5, at a fractional effect of 0.9). Synergy between the drugs was consistent, with a significant (P < .05) reduction in the 50% inhibitory concentration for both drugs. IBL-202 and venetoclax in combination induced cell-cycle arrest and slowed the proliferation of both wild-type and TP53-KO cell lines. The drug combination inhibited AKT phosphorylation, reduced expression of Bcl-xL and NF-κB, and increased the Noxa/Mcl-1 ratio. Downregulation of CXCR4 was consistent with inhibition of the SDF-1α-induced migratory capacity of CLL cells. Synergy between IBL-202 and venetoclax against primary CLL cells cultured under conditions that mimic the tumor microenvironment suggests this drug combination may be effective against CLL cells within the lymph nodes and bone marrow. Furthermore, the efficacy of the combination against the TP53-KO OSU-CLL cell line suggests the combination may be a highly effective treatment strategy for high-risk CLL.
Collapse
|
7
|
Schoentgen F, Jonic S. PEBP1/RKIP behavior: a mirror of actin-membrane organization. Cell Mol Life Sci 2020; 77:859-874. [PMID: 31960115 PMCID: PMC11105014 DOI: 10.1007/s00018-020-03455-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Phosphatidylethanolamine-binding protein 1 (PEBP1), a small 21 kDa protein, is implicated in several key processes of the living cell. The deregulation of PEBP1, especially its downregulation, leads to major diseases such as cancer and Alzheimer's disease. PEBP1 was found to interact with numerous proteins, especially kinases and GTPases, generally inhibiting their activity. To understand the basic functionality of this amazing small protein, we have considered several known processes that it modulates and we have discussed the role of each molecular target in these processes. Here, we propose that cortical actin organization, associated with membrane changes, is involved in the majority of the processes modulated by PEBP1. Furthermore, based on recent data, we summarize some key PEBP1-interacting proteins, and we report their respective functions and focus on their relationships with actin organization. We suggest that, depending on the cell status and environment, PEBP1 is an organizer of the actin-membrane composite material.
Collapse
Affiliation(s)
- Françoise Schoentgen
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France.
| | - Slavica Jonic
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
8
|
Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O. RKIP as an Inflammatory and Immune System Modulator: Implications in Cancer. Biomolecules 2019; 9:biom9120769. [PMID: 31766768 PMCID: PMC6995551 DOI: 10.3390/biom9120769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.
Collapse
Affiliation(s)
- Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil
- Correspondence: ; Tel.: +351-253604868
| |
Collapse
|
9
|
RAF Kinase Inhibitor Protein in Myeloid Leukemogenesis. Int J Mol Sci 2019; 20:ijms20225756. [PMID: 31744053 PMCID: PMC6888401 DOI: 10.3390/ijms20225756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
RAF kinase inhibitor protein (RKIP) is an essential regulator of intracellular signaling. A somatic loss of RKIP expression is a frequent event in solid human cancers, and a role of RKIP as metastasis-suppressor is widely accepted nowadays. Recently, RKIP loss has been described in acute myeloid leukemia (AML) and a series of other myeloid neoplasias (MNs). Functional in vitro and in vivo experiments revealed that RKIP is an essential player within the development of these liquid tumors; however, the respective role of RKIP seems to be complex and multi-faceted. In this review, we will summarize the current knowledge about RKIP in myeloid leukemogenesis. We will initially describe its involvement in physiologic hematopoiesis, and will then proceed to discuss its role in the development of AML and other MNs. Finally, we will discuss potential therapeutic implications arising thereof.
Collapse
|
10
|
Locostatin Alleviates Liver Fibrosis Induced by Carbon Tetrachloride in Mice. Dig Dis Sci 2019; 64:2570-2580. [PMID: 30874989 DOI: 10.1007/s10620-019-05588-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Liver fibrosis is featured with excessive deposition of extracellular matrix and fibrous connective tissue hyperplasia. The specific inhibitor of Raf-1 kinase inhibitor protein, locostatin, inhibits the migration of hepatic stellate cells. In this study, we investigated the effect of locostatin on liver fibrosis and its underlying mechanism. METHODS Carbon tetrachloride (CCl4) was used to induce liver fibrosis in mice, and locostatin was injected intraperitoneally. Liver fibrosis was assessed by Masson and Sirius red staining, hydroxyproline (HYP) assay, and collagen percentage area. Collagen I, collagen III, and α-SMA were detected by RT-PCR and western blot. The levels of MMP-13, MMP-2, TIMP-1, and TIMP-2 were estimated by ELISA. Liver inflammation was evaluated by HE staining and immunohistochemistry; liver myeloperoxidase (MPO), superoxide dismutase, and malondialdehyde were measured by ELISA; and cytokines were by Mouse Cytokine Array Q4000. RESULTS Compared to the CCl4 group, HYP (208.56 ± 6.12) µg/g, percentage of total collagen at overall region (1.91 ± 0.13), MMP-13/TIMP-1 (0.19 ± 0.01), MPO (1.45 ± 0.04) U/g, TGF-β (2652 ± 91.20), PDGF-AA (3897 ± 290.69), and E-selectin (1569 ± 66.48) in the liver tissues were decreased significantly in the locostatin-treated group. CONCLUSIONS Locostatin mitigated liver fibrosis and inflammation induced by CCl4. The mechanism is via inhibition inflammatory cytokines, TGF-β, PDGF-AA, and E-selectin.
Collapse
|
11
|
Xu D, He H, Jiang X, Yang L, Liu D, Yang L, Geng G, Cheng J, Chen H, Hua R, Duan J, Li X, Wu L, Li Y, Li Q. Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis in bovine ovarian granulosa cells. Reprod Domest Anim 2019; 54:741-749. [PMID: 30785650 DOI: 10.1111/rda.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022]
Abstract
Steroid hormones are required for normal reproductive function of female. The aim of this study was to investigate the role of Raf-ERK1/2 on steroid hormone synthesis in bovine ovarian granulosa cells. Immunohistochemistry assay showed that both B-Raf and C-Raf were expressed in granulosa cells, theca cells and Sertoli cells. The protein expression of Raf or ERK1/2 was clearly decreased by Raf inhibitor GSK2118436 or ERK1/2 inhibitor SCH772984, respectively (p < 0.05). In addition, western blotting was performed for investigating the crosstalk between Raf and ERK1/2, the data showed that Raf positively regulated ERK1/2, whereas ERK1/2 had a negative feedback effect on Raf. The biosynthesis of oestradiol or testosterone was significantly decreased by treatment with GSK2118436 or SCH772984 (p < 0.05). Conversely, the progesterone biosynthesis was clearly increased by treatment with those inhibitors (p < 0.05). Furthermore, the mRNA expression of STAR, aromatase and CYP17 was blocked by Raf-ERK1/2 signalling inhibition, which oppositely induced the mRNA expression of CYP11. Together, these findings suggested that Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis via affecting the expression of steroidogenic enzymes.
Collapse
Affiliation(s)
- Dejun Xu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huanshan He
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lulu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dinbang Liu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Li Yang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huali Chen
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Rongmao Hua
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jiaxin Duan
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lin Wu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuan Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|