1
|
Wang JF, Wang Y. Evaluating pirtobrutinib for the treatment of relapsed or refractory mantle cell lymphoma. Expert Rev Hematol 2024; 17:651-659. [PMID: 39109468 DOI: 10.1080/17474086.2024.2389993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an uncommon non-Hodgkin lymphoma that is generally considered incurable. Covalent BTK inhibitors (cBTKi) are the cornerstone of treatment for relapsed or refractory (R/R) MCL, but treatment options are limited and prognosis is poor after cBTKi failure. Pirtobrutinib is a non-covalent BTK inhibitor that has demonstrated excellent efficacy and safety and represents an important new treatment in the evolving treatment landscape of R/R MCL. AREAS COVERED This review will provide an overview of the therapeutic landscape of R/R MCL, characteristics of pirtobrutinib, and efficacy and safety data of pirtobrutinib in R/R MCL from pivotal clinical trials. PubMed and major hematology conference proceedings were searched to identify relevant studies involving pirtobrutinib. EXPERT OPINION For patients with R/R MCL that has progressed after treatment with cBTKi, pirtobrutinib is an important and efficacious treatment that confers favorable outcomes. In the post-cBTKi setting, when chimeric antigen receptor (CAR) T-cell therapy is not available or feasible, pirtobrutinib is the preferred treatment for R/R MCL. How to sequence or combine pirtobrutinib with CAR T-cell therapy and other available or emerging therapies requires further investigation. Future studies should also explore the role of pirtobrutinib in earlier lines of therapy for MCL.
Collapse
Affiliation(s)
| | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules 2023; 28:2400. [PMID: 36903645 PMCID: PMC10005125 DOI: 10.3390/molecules28052400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In the last few decades, there has been a growing interest in Bruton's tyrosine kinase (BTK) and the compounds that target it. BTK is a downstream mediator of the B-cell receptor (BCR) signaling pathway and affects B-cell proliferation and differentiation. Evidence demonstrating the expression of BTK on the majority of hematological cells has led to the hypothesis that BTK inhibitors (BTKIs) such as ibrutinib can be an effective treatment for leukemias and lymphomas. However, a growing body of experimental and clinical data has demonstrated the significance of BTK, not just in B-cell malignancies, but also in solid tumors, such as breast, ovarian, colorectal, and prostate cancers. In addition, enhanced BTK activity is correlated with autoimmune disease. This gave rise to the hypothesis that BTK inhibitors can be beneficial in the therapy of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Sjögren's syndrome (SS), allergies, and asthma. In this review article, we summarize the most recent findings regarding this kinase as well as the most advanced BTK inhibitors that have been developed to date and their clinical applications mainly in cancer and chronic inflammatory disease patients.
Collapse
Affiliation(s)
- Dariusz Rozkiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Anna Krupa
- Department of Internal Medicine and Metabolic, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
3
|
Concurrent Inhibition of Akt and ERK Using TIC-10 Can Overcome Venetoclax Resistance in Mantle Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15020510. [PMID: 36672458 PMCID: PMC9856512 DOI: 10.3390/cancers15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Venetoclax, a BCL-2 inhibitor, has proven to be effective in several hematological malignancies, including mantle cell lymphoma (MCL). However, development of venetoclax resistance is inevitable and understanding its underlying molecular mechanisms can optimize treatment response. We performed a thorough genetic, epigenetic and transcriptomic analysis of venetoclax-sensitive and resistant MCL cell lines, also evaluating the role of the stromal microenvironment using human and murine co-cultures. In our model, venetoclax resistance was associated with abrogated TP53 activity through an acquired mutation and transcriptional downregulation leading to a diminished apoptotic response. Venetoclax-resistant cells also exhibited an upregulation of the PI3K/Akt pathway, and pharmacological inhibition of Akt and ERK with TIC-10 led to cell death in all venetoclax-resistant cell lines. Overall, we highlight the importance of targeted therapies, such as TIC-10, against venetoclax resistance-related pathways, which might represent future therapeutic prospects.
Collapse
|
4
|
Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e1019-e1031. [PMID: 36068158 DOI: 10.1016/j.clml.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mantle cell lymphoma (MCL) accounts for nearly 2-6% of all non-Hodgkin lymphoma (NHL) cases, with a steady incidence increase over the past few decades. Although many patients achieve an adequate response to the upfront treatment, the short duration of remission with rapid relapse is challenging during MCL management. In this regard, there is no consensus on the best treatment options for relapsed/refractory (R/R) disease, and the international guidelines demonstrate wide variations in the recommended approaches. The last decade has witnessed the introduction of new agents in the treatment landscape of R/R MCL. Since the introduction of Bruton's tyrosine kinase (BTK) inhibitors, the treatment algorithm and response of R/R MCL patients have dramatically changed. Nevertheless, BTK resistance is common, necessitating further investigations to develop novel agents with a more durable response. Novel agents targeting the B-cell receptor (BCR) signaling have exhibited clinical activity and a well-tolerable safety profile. However, as the responses to these novel agents are still modest in most clinical trials, combination strategies were investigated in pre-clinical and early clinical settings to determine whether the combination of novel agents would exhibit a better durable response than single agents. In this report, we provide an updated literature review that covers recent clinical data about the safety and efficacy of novel therapies for the management of R/R MCL.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Center, Jeddah, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Tbakhi B, Reagan PM. Chimeric antigen receptor (CAR) T-cell treatment for mantle cell lymphoma (MCL). Ther Adv Hematol 2022; 13:20406207221080738. [PMID: 35237395 PMCID: PMC8882938 DOI: 10.1177/20406207221080738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare B-cell malignancy that remains challenging
to treat with high rates of relapse. Frontline strategies range from intensive
chemotherapy followed by consolidation with autologous stem cell transplant
(ASCT), to less-intensive therapies including combination regimens. The
treatment landscape for relapsed patients includes Bruton tyrosine kinase (BTK)
inhibitors among other targeted treatments. Novel agents such as the selective
BCL2 inhibitor venetoclax showed high response rates when used as monotherapy
for refractory relapsed MCL. The rituximab, bendamustine, and cytarabine (R-BAC)
regimen, while response rates were high, were not durable. Chimeric antigen
receptor (CAR) T-cell products targeting CD19 have been efficacious in relapsed
and refractory MCL patients. Brexucabtagene autoleucel (brexu-cel, formerly
KTE-X19) was approved by US Food and Drug Administration (FDA) in July, 2020,
for treatment of refractory and relapsed MCL. This article provides an overview
for the available management strategies for relapsed MCL and examines the role
of CAR T-cell in the current and future treatment of MCL.
Collapse
Affiliation(s)
- Bushra Tbakhi
- Department of Hematology/Oncology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick M. Reagan
- Department of Hematology/Oncology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Yi S, Yan Y, Jin M, Bhattacharya S, Wang Y, Wu Y, Yang L, Gine E, Clot G, Chen L, Yu Y, Zou D, Wang J, Phan AT, Cui R, Li F, Sun Q, Zhai Q, Wang T, Yu Z, Liu L, Liu W, Lyv R, Sui W, Huang W, Xiong W, Wang H, Li C, Xiao Z, Hao M, Wang J, Cheng T, Bea S, Herrera AF, Danilov A, Campo E, Ngo VN, Qiu L, Wang L. Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma. J Clin Invest 2022; 132:e153283. [PMID: 34882582 PMCID: PMC8803323 DOI: 10.1172/jci153283] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a phenotypically and genetically heterogeneous malignancy in which the genetic alterations determining clinical indications are not fully understood. Here, we performed a comprehensive whole-exome sequencing analysis of 152 primary samples derived from 134 MCL patients, including longitudinal samples from 16 patients and matched RNA-Seq data from 48 samples. We classified MCL into 4 robust clusters (C1-C4). C1 featured mutated immunoglobulin heavy variable (IGHV), CCND1 mutation, amp(11q13), and active B cell receptor (BCR) signaling. C2 was enriched with del(11q)/ATM mutations and upregulation of NF-κB and DNA repair pathways. C3 was characterized by mutations in SP140, NOTCH1, and NSD2, with downregulation of BCR signaling and MYC targets. C4 harbored del(17p)/TP53 mutations, del(13q), and del(9p), and active MYC pathway and hyperproliferation signatures. Patients in these 4 clusters had distinct outcomes (5-year overall survival [OS] rates for C1-C4 were 100%, 56.7%, 48.7%, and 14.2%, respectively). We also inferred the temporal order of genetic events and studied clonal evolution of 16 patients before treatment and at progression/relapse. Eleven of these samples showed drastic clonal evolution that was associated with inferior survival, while the other samples showed modest or no evolution. Our study thus identifies genetic subsets that clinically define this malignancy and delineates clonal evolution patterns and their impact on clinical outcomes.
Collapse
Affiliation(s)
- Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Supriyo Bhattacharya
- Division of Translational Bioinformatics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Irwindale, California, USA
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yiming Wu
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Eva Gine
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Clot
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Lu Chen
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ying Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - An T. Phan
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Rui Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, Tianjin First Center Hospital, Tianjin, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Lyv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Silvia Bea
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Alex F. Herrera
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Alexey Danilov
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Elias Campo
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Vu N. Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
7
|
Wang BR, Wan CL, Liu SB, Qiu QC, Wu TM, Wang J, Li YY, Ge SS, Qiu Y, Shen XD, Xue SL, Li Z. A Combined Histone Deacetylases Targeting Strategy to Overcome Venetoclax Plus Azacitidine Regimen Resistance in Acute Myeloid Leukaemia: Three Case Reports. Front Oncol 2021; 11:797941. [PMID: 34956909 PMCID: PMC8695792 DOI: 10.3389/fonc.2021.797941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
The management of patients with relapsed or refractory (R/R) acute myeloid leukaemia (AML) remains a challenge with few reliably effective treatments. Chidamide, a new selective HDAC inhibitor, has demonstrated some effectiveness in AML patients. Herein, we reported three patients with R/R AML who were unresponsive to venetoclax plus azacitidine (VA) but were successfully treated with VA when chidamide was added to the regimen. MCL1 is one of the anti-apoptotic proteins. Chidamide targets the MCL1 protein, which may permit venetoclax resistance when upregulated. We determined MCL1 protein expression in different AML cell lines, and chidamide could downregulate MCL1 expression in venetoclax resistance AML cells. In general, our experience showed that the chidamide/VA combination could improve the condition of R/R AML patients who are resistant to VA. Formally evaluating this regimen in R/R AML patients may be meaningful.
Collapse
Affiliation(s)
- Bin-Ru Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tian-Mei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan-Yan Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiang-Dong Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Zhang Y, Lu P, Zhou Y, Zhang L. Inhibition of LINK-A lncRNA overcomes ibrutinib resistance in mantle cell lymphoma by regulating Akt/Bcl2 pathway. PeerJ 2021; 9:e12571. [PMID: 35003920 PMCID: PMC8686732 DOI: 10.7717/peerj.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ibrutinib, a bruton tyrosine kinase (BTK) inhibitor which suppresses B-cell receptor signaling, has remarkably improved the outcome of patients with mantle cell lymphoma (MCL). However, approximately 33% of MCL patients have primary Ibrutinib resistance, and acquired Ibrutinib resistance is nearly universal. Long intergenic non-coding RNA for kinase activation (LINK-A) exerts oncogenic role in different types of tumors, but the role of LINK-A in intrinsic ibrutinib resistance in MCL is still unclear. Here, LINK-A expression level was first assessed using quantitative Real-time PCR (qPCR) and immunofluorescence analysis in five MCL cell lines. The effect of LINK-A on regulating MCL cells viability and apoptosis was assayed using CCK-8 and TdT-mediated dUTP nick end labeling (TUNEL) assay, respectively. The association of LINK-A with AKT activation and B cell lymphoma 2 (Bcl2)expression was evaluated using qPCR and western blot analysis. We found that LINK-A level was elevated in Ibrutinib-resistant MCL cell lines (Mino, REC-1, MAVER-1, and Granta-519) compared to Ibrutinib-sensitive MCL cell lines (Jeko-1). Functionally, LINK-A overexpression in Jeko-1 cells enhanced cell viability and repressed Ibrutinib-induced cell apoptosis. LINK-A knockdown in MAVER-1 cells decreased cell viability and further accelerated Ibrutinib-induced cell apoptosis. LINK-A overexpression enhanced Bcl2 expression in Jeko-1 cells, and Bcl2 inhibition blocked the effect of LINK-A on increasing cell viability in the presence of Ibrutinib. On the contrary, LINK-A knockdown reduced Bcl2 expression in MAVER-1 cells, and Bcl2 overexpression damaged the role of LINK-A inhibition in regulating cell viability. Mechanistically, LINK-A positively regulated the activation of AKT signaling, and inhibition of AKT signaling destroyed LINK-A-induced increased of Bcl2 and resulted in a subsequent suppression of cell viability. Taken together, the current results demonstrate that LINK-A inhibition overcomes Ibrutinib resistance in MCL cells by regulating AKT/Bcl2 pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Moreno C, Muñoz C, Terol MJ, Hernández-Rivas JÁ, Villanueva M. Restoration of the immune function as a complementary strategy to treat Chronic Lymphocytic Leukemia effectively. J Exp Clin Cancer Res 2021; 40:321. [PMID: 34654437 PMCID: PMC8517318 DOI: 10.1186/s13046-021-02115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a hematological malignancy characterized by uncontrolled proliferation of B-cells and severe immune dysfunction. Chemo(immuno)therapies (CIT) have traditionally aimed to reduce tumor burden without fully understanding their effects on the immune system. As a consequence, CIT are usually associated with higher risk of infections, secondary neoplasms and autoimmune disorders. A better understanding of the biology of the disease has led to the development of therapeutic strategies which not only act against malignant B-cells but also reactivate and enhance the patient's own anti-tumor immune response. Here, we review the current understanding of the underlying interplay between the malignant cells and non-malignant immune cells that may promote tumor survival and proliferation. In addition, we review the available evidence on how different treatment options for CLL including CIT regimens, small molecular inhibitors (i.e, BTK inhibitors, PI3K inhibitors, BCL-2 inhibitors) and T-cell therapies, affect the immune system and their clinical consequences. Finally, we propose that a dual therapeutic approach, acting directly against malignant B-cells and restoring the immune function is clinically relevant and should be considered when developing future strategies to treat patients with CLL.
Collapse
Affiliation(s)
| | - Cecilia Muñoz
- Hospital Universitario de la Princesa, Madrid, Spain
| | | | - José-Ángel Hernández-Rivas
- Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain.
- Servicio de Hematología y Hemoterapia, Hospital Universitario Infanta Leonor, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, España.
- , C/ Gran Vía del Este 80, 28031, Madrid, Spain.
| | | |
Collapse
|
10
|
Yue X, Chen Q, He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int 2020; 20:524. [PMID: 33292251 PMCID: PMC7597043 DOI: 10.1186/s12935-020-01614-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Venetoclax has been approved by the United States Food and Drug Administration since 2016 as a monotherapy for treating patients with relapsed/refractory chronic lymphocytic leukemia having 17p deletion. It has led to a breakthrough in the treatment of hematologic malignancies in recent years. However, unfortunately, resistance to venetoclax is inevitable. Multiple studies confirmed that the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family mediated by various mechanisms, such as tumor microenvironment, and the activation of intracellular signaling pathways were the major factors leading to resistance to venetoclax. Therefore, only targeting BCL2 often fails to achieve the expected therapeutic effect. Based on the mechanism of resistance in specific hematologic malignancies, the combination of specific drugs with venetoclax was a clinically optional treatment strategy for overcoming resistance to venetoclax. This study aimed to summarize the possible resistance mechanisms of various hematologic tumors to venetoclax and the corresponding clinical strategies to overcome resistance to venetoclax in hematologic malignancies.
Collapse
Affiliation(s)
- XiaoYan Yue
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - JingSong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
McDonald G, Chubukov V, Coco J, Truskowski K, Narayanaswamy R, Choe S, Steadman M, Artin E, Padyana AK, Jin L, Ronseaux S, Locuson C, Fan ZP, Erdmann T, Mann A, Hayes S, Fletcher M, Nellore K, Rao SS, Subramanya H, Reddy KS, Panigrahi SK, Antony T, Gopinath S, Sui Z, Nagaraja N, Dang L, Lenz G, Hurov J, Biller SA, Murtie J, Marks KM, Ulanet DB. Selective Vulnerability to Pyrimidine Starvation in Hematologic Malignancies Revealed by AG-636, a Novel Clinical-Stage Inhibitor of Dihydroorotate Dehydrogenase. Mol Cancer Ther 2020; 19:2502-2515. [PMID: 33082276 DOI: 10.1158/1535-7163.mct-20-0550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.
Collapse
Affiliation(s)
| | | | - John Coco
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Sung Choe
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Mya Steadman
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Erin Artin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lei Jin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Zi-Peng Fan
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | - Alan Mann
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Mark Fletcher
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | - Thomas Antony
- Aurigene Discovery Technologies Ltd., Bangalore, India
| | | | - Zhihua Sui
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lenny Dang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Josh Murtie
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
12
|
Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Chinen Y, Tanba K, Kuwahara-Ota S, Fujibayashi Y, Nishiyama D, Isa R, Yamaguchi J, Kawaji-Kanayama Y, Kobayashi T, Horiike S, Taniwaki M, Kuroda J. Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med 2020; 9:5185-5199. [PMID: 32420699 PMCID: PMC7367644 DOI: 10.1002/cam4.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
RSK2 is a serine/threonine kinase downstream signaling mediator in the RAS/ERK signaling pathway and may be a therapeutic target in mantle cell lymphoma (MCL), an almost incurable disease subtype of non‐Hodgkin lymphoma. In this study, serine‐227 (RSK2Ser227) in the N‐terminal kinase domain (NTKD) of RSK2 was found to be ubiquitously active in five MCL‐derived cell lines and in tumor tissues derived from five MCL patients. BI‐D1870, an inhibitor specific to RSK2‐NTKD, caused RSK2Ser227 dephosphorylation, and thereby, induced dose‐dependent growth inhibition via G2/M cell cycle blockade and apoptosis in four of the five cell lines, while one cell line showed only modest sensitivity. In addition, RSK2 gene knockdown caused growth inhibition in the four BI‐D1870‐sensitive cell lines. Comparative gene expression profiling of the MCL‐derived cell lines showed that inhibition of RSK2Ser227 by BI‐D1870 caused downregulation of oncogenes, such as c‐MYC and MYB; anti‐apoptosis genes, such as BCL2 and BCL2L1; genes for B cell development, including IKZF1, IKZF3, and PAX5; and genes constituting the B cell receptor signaling pathway, such as CD19, CD79B, and BLNK. These findings show that targeting of RSK2Ser227 enables concomitant blockade of pathways that are critically important in B cell tumorigenesis. In addition, we found favorable combinatory growth inhibitory effects of BI‐D1870 with inhibitors of BTK (ibrutinib), AKT (ipatasertib), and BCL2 (venetoclax) in cell characteristic‐dependent manners. These results provide a rationale for RSK2Ser227 in the NTKD as a potential therapeutic target in MCL and for future development of a novel bioavailable RSK2 NTKD‐specific inhibitor.
Collapse
Affiliation(s)
- Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuna Tanba
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Sarkozy C, Ribrag V. Novel agents for mantle cell lymphoma: molecular rational and clinical data. Expert Opin Investig Drugs 2020; 29:555-566. [PMID: 32321318 DOI: 10.1080/13543784.2020.1760245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an aggressive B cell non-Hodgkin lymphoma (NHL) that is characterized by the translocation t(11;14)(q13;q32) and a poor response to rituximab-anthracycline-based chemotherapy. Intensive regimens offer durable response, but a subgroup of MCL patients will not be eligible for those regimens and hence are candidates for less toxic, novel therapies based on a more tailored personalized approach. AREAS COVERED This article examines the molecular landscape of MCL, drug resistance mechanisms, and the data on emerging targeted therapies. EXPERT OPINION DNA damage pathway, ATM mutation, TP53, and epigenetic abnormalities are key drivers of MCL. sBCL2, PARP, ATR, CDK inhibitors or epigenetic modifiers are among the most promising drugs under investigation in clinical trials. The genomic landscape of MCL suggests two types of disease based on the presence of ATM or TP53 alterations which should be the framework of future molecular driven strategies. Among novel drugs, those interacting with the DNA damage response pathway offer the most effective rational for their use in MCL.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de lyon, INSERM Unité Mixte de Recherche (UMR)-S1052 , Lyon, France
| | | |
Collapse
|
14
|
Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol 2019; 94:710-725. [PMID: 30963600 DOI: 10.1002/ajh.25487] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Unprecedented advances in our understanding of the pathobiology, prognostication, and therapeutic options in mantle cell lymphoma (MCL) have taken place in the last few years. Heterogeneity in the clinical course of MCL-indolent vs aggressive-is further delineated by a correlation with the mutational status of the variable region of immunoglobulin heavy chain, methylation status, and SOX-11 expression. Cyclin-D1 negative MCL, in situ MCL neoplasia, and impact of the karyotype on prognosis are distinguished. Apart from Ki-67% and morphology pattern (classic vs blastoid/pleomorphic), the proliferation gene signature has helped to further refine prognostication. Studies focusing on mutational dynamics and clonal evolution on Bruton's tyrosine kinase (BTK) inhibitors (ibrutinib, acalabrutinib) and/or Bcl2 antagonists (venetoclax) have further clarified the prognostic impact of somatic mutations in TP53, BIRC3, CDKN2A, MAP3K14, NOTCH2, NSD2, and SMARCA4 genes. In therapy, long-term follow-up on chemo-immunotherapy studies has demonstrated durable remissions in some patients; however, long-term toxicities, especially from second cancers, are a serious concern with chemotherapy. The therapeutic options in MCL are constantly evolving, with dramatic responses from nonchemotherapeutic agents (ibrutinib, acalabrutinib, and venetoclax). Chimeric antigen receptor therapy and combinations of nonchemotherapeutic agents are actively being studied and our focus is shifting toward making the treatment of MCL chemotherapy-free. Still, MCL remains incurable. The following aspects of MCL continue to pose a challenge: disease transformation, role of the cytokine-microenvironmental milieu, incorporation of positron emission tomography-computerized tomography imaging, minimal residual disease in the prognosis, circulating tumor DNA testing for clonal evolution, predicting resistance to BTK inhibitors, and optimal management of patients who progress on BTK/Bcl2 inhibitors. Next-generation clinical trials should incorporate nonchemotherapeutic agents and personalize the treatment based upon the genomic profile of individual patient. Recent advances in the field of MCL are reviewed.
Collapse
Affiliation(s)
- Preetesh Jain
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Wang
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|