1
|
Ohe R. Mechanisms of lymphoma-stromal interactions focusing on tumor-associated macrophages, fibroblastic reticular cells, and follicular dendritic cells. J Clin Exp Hematop 2024; 64:166-176. [PMID: 39085126 PMCID: PMC11528246 DOI: 10.3960/jslrt.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
The interaction between cancer cells and stromal cells contributes to the pathogenesis of various types of tumors in the tumor microenvironment (TME). Macrophages (Mφs), a type of stromal cell, are transformed into tumor-associated Mφs (TAMs) after integrating within solid tumors. TAMs are known to interact with cancer cells and induce tumor progression. Thus, the cancer cells construct an organ-specific TME, which is advantageous for the survival of cancer cells in the TME. The density of stromal cells is known to be involved in the prognosis of patients with lymphomas. A higher density of stromal cells increases the interaction between lymphoma cells and stromal cells, promoting lymphoma progression. This review focuses on stromal cells in lymphoid tissues, such as TAMs, fibroblastic reticular cells (FRCs), and follicular dendritic cells (FDCs). This review also focuses on the signal transduction caused by stromal cells and tumor cells via factors such as cytokines. IL-10 and other cytokines secreted by TAMs activate the JAK/STAT pathway in lymphoma cells of follicular lymphoma, classic Hodgkin lymphoma, and diffuse large B-cell lymphoma. FRCs play roles in tumor promotion in follicular lymphoma and diffuse large B-cell lymphoma. Cytokines/chemokines secreted by FDCs play essential roles in lymphoma cell survival, proliferation, invasion, and migration in follicular lymphoma. In conclusion, TAMs, FRCs, and FDCs play crucial roles in the TME of lymphomas. Furthermore, histological spatial analysis revealing the positional relationship of each cell could highlight lymphoma-stromal interactions.
Collapse
Affiliation(s)
- Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
2
|
Ribatti D, Tamma R, Annese T, Ingravallo G, Specchia G. Macrophages and angiogenesis in human lymphomas. Clin Exp Med 2024; 24:26. [PMID: 38285283 PMCID: PMC10824884 DOI: 10.1007/s10238-023-01291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
A link exists between chronic inflammation and cancer and immune cells, angiogenesis, and tumor progression. In hematologic malignancies, tumor-associated macrophages (TAMs) are a significant part of the tumor microenvironment. Macrophages are classified into M1/classically activated and M2/alternatively activated. In tumors, TAMs are mainly constituted by M2 subtype, which promotes angiogenesis, lymphangiogenesis, repair, and remodeling, suppressing adaptive immunity, increasing tumor cell proliferation, drug resistance, histological malignancy, and poor clinical prognosis. The aim of our review article is to define the role of TAMs and their relationship with the angiogenesis in patients with lymphoma reporting both an analysis of main published data and those emerging from our studies. Finally, we have discussed the anti-angiogenic approach in the treatment of lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
3
|
Wang L, Zhou M, Kong X, Wu S, Ding C, Hu X, Guo H, Yan J. Specific Targeting of STAT3 in B Cells Suppresses Progression of B Cell Lymphoma. Int J Mol Sci 2023; 24:13666. [PMID: 37686472 PMCID: PMC10563066 DOI: 10.3390/ijms241713666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3), which regulates multiple oncogenic processes, has been found to be constitutively activated in lymphoma, suggesting its potential as a therapeutic target. Here, we constructed an anti-CD19-N-(4-carboxycyclohexylmethyl) maleimide N-hydroxysuccinimide ester (SMCC)-protamine (CSP)-STAT3 small interfering RNA (siRNA) conjugate and demonstrated that the CSP-STAT3 siRNA conjugate could specifically bind to normal B cells and A20 lymphoma cells in vitro. It decreased the STAT3 expression in B cell lymphoma cell lines (A20, SU-DHL-2 and OCI-Ly3), resulting in reduced proliferation of lymphoma cells featured with lower S-phase and higher apoptosis. Using an A20 transplantable lymphoma model, we found that the CSP-STAT3 siRNA conjugate significantly inhibited tumor growth and weight. Ki-67, p-STAT3, STAT3, and serum IL-6 levels were all significantly reduced in A20-bearing mice treated with CSP-STAT3 siRNA. These findings indicate that specifically targeting STAT3 siRNA to B cell lymphoma cell lines can significantly decrease STAT3 activity and inhibit tumor progression in vitro and in vivo, suggesting its potential utilization for cancer treatment.
Collapse
Affiliation(s)
- Lipei Wang
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiangyu Kong
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouzhen Wu
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Haixun Guo
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| |
Collapse
|
4
|
Tamma R, Ingravallo G, Gaudio F, d’Amati A, Masciopinto P, Bellitti E, Lorusso L, Annese T, Benagiano V, Musto P, Specchia G, Ribatti D. The Tumor Microenvironment in Classic Hodgkin's Lymphoma in Responder and No-Responder Patients to First Line ABVD Therapy. Cancers (Basel) 2023; 15:2803. [PMID: 37345141 PMCID: PMC10216100 DOI: 10.3390/cancers15102803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Although classical Hodgkin lymphoma (CHL) is typically curable, 15-25% of individuals eventually experience a relapse and pass away from their disease. In CHL, the cellular microenvironment is constituted by few percent of H/RS (Hodgkin/Reed-Sternberg) tumor cells surrounded from a heterogeneous infiltration of inflammatory cells. The interplay of H/RS cells with other immune cells in the microenvironment may provide novel strategies for targeted immunotherapies. In this paper we analyzed the microenvironment content in CHL patients with responsive disease (RESP) and patients with relapsed/refractory disease to treatment (REL). Our results indicate the increase of CD68+ and CD163+ macrophages, the increase of PDL-1+ cells and of CD34+ microvessels in REL patients respective to RESP patients. In contrast we also found the decrease of CD3+ and of CD8+ lymphocytes in REL patients respective to RESP patients. Finally, in REL patients our results show the positive correlation between CD68+ macrophages and PDL-1+ cells as well as a negative correlation between CD163+ and CD3+.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
| | - Giuseppe Ingravallo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Francesco Gaudio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Antonio d’Amati
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Pierluigi Masciopinto
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Emilio Bellitti
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
| | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Giorgina Specchia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy; (G.I.); (F.G.); (P.M.); (E.B.); (P.M.); (G.S.)
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (A.d.); (L.L.); (T.A.); (V.B.)
| |
Collapse
|
5
|
Liang X, Hu R, Li Q, Wang C, Liu Y. Prognostic factors for diffuse large B-cell lymphoma: clinical and biological factors in the rituximab era. Exp Hematol 2023:S0301-472X(23)00071-1. [PMID: 36933759 DOI: 10.1016/j.exphem.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Xiping Liang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China
| | - Renzhi Hu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China
| | - Qiying Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China.
| |
Collapse
|
6
|
Lu Y, Zhu H, Liu Y, Wang Y, Sun Y, Cheng H, Yan Z, Cao J, Sang W, Zhu F, Li D, Sun H, Zheng J, Xu K, Li Z. Prognostic value of prelymphodepletion absolute lymphocyte counts in relapsed/refractory diffuse large B-cell lymphoma patients treated with chimeric antigen receptor T cells. Front Immunol 2023; 14:1155216. [PMID: 37205117 PMCID: PMC10185822 DOI: 10.3389/fimmu.2023.1155216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented efficacy recently. However, the factors related to responses and durable remission are elusive. This study was to investigate the impact of pre-lymphodepletion (pre-LD) absolute lymphocyte count (ALC) on CAR T cell therapy outcomes. Methods We conducted a retrospective study of 84 patients with relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) who underwent CAR T cell treatment at the Affiliated Hospital of Xuzhou Medical University between March 1,2016 and December 31, 2021. The enrolled patients were divided into high group and low group according to the optimal cutoff value of pre-LD ALC. The Kaplan-Meier analyses was used to calculate survival curves. The Cox proportional hazards model was used for univariate and multivariate analysis to assess the prognostic factors. Results The ROC showed that the optimal cutoff value of pre-LD ALC was 1.05 x 109/L. The overall response (defined as partial response or complete response) rate was significantly higher in patients with a high pre-LD ALC (75% versus 52.08%; P=0.032). Patients with a low pre-LD ALC had significantly inferior overall survival (OS) and progression-free survival (PFS) compared with those having a high pre-LD ALC (median OS, 9.6 months versus 45.17 months [P=0.008]; median PFS, 4.07 months versus 45.17 months [P= 0.030]). Meanwhile, low pre-LD ALC is an independent risk factor for PFS and OS. Discussion The data suggested that pre-LD ALC may serve as a helpful indicator to predict the outcomes of CAR T cell therapy in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Yanyan Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Hong Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yinxiang Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Depeng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Haiying Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou, Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Junnian Zheng, ; Kailin Xu, ; Zhenyu Li,
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- *Correspondence: Junnian Zheng, ; Kailin Xu, ; Zhenyu Li,
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- *Correspondence: Junnian Zheng, ; Kailin Xu, ; Zhenyu Li,
| |
Collapse
|
7
|
Maharaj K, Uriepero A, Sahakian E, Pinilla-Ibarz J. Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Front Immunol 2022; 13:943354. [PMID: 35979372 PMCID: PMC9376239 DOI: 10.3389/fimmu.2022.943354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Angimar Uriepero
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- *Correspondence: Javier Pinilla-Ibarz,
| |
Collapse
|
8
|
RNAscope for VEGF-A Detection in Human Tumor Bioptic Specimens. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2475:143-155. [PMID: 35451755 DOI: 10.1007/978-1-0716-2217-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Different pro-angiogenic factors, such as vascular endothelial growth factor-A (VEGF-A), have been related to microvascular density, clinicopathologic factors, and poor prognosis in many tumors. VEGF-A binds its receptor 2 (VEGFR2) to induce neo-angiogenesis, a constant hallmark of tumor initiation and progression. Based on VEGF-A/VEGFR2 relevance in tumor angiogenesis, several inhibitors were developed. However, the clinical benefits of anti-angiogenic therapies are limited because tumors activate different mechanisms of drug resistance.The need for understanding tumor biology, limitation or failure of anti-angiogenic therapies, and the demand for a personalized therapeutic approach has boosted the search for robust biomarkers for patient stratification as responder or non-responder to anti-VEGF therapies.This chapter presents a detailed protocol to perform chromogenic VEGF-A mRNA detection and quantification in human tumor bioptic specimens using RNAscope technology and RNA-in situ hybridization (ISH) algorithm. RNAscope for VEGF-A detection, even for small amounts, is compatible with precious clinical samples and diagnostic laboratory workflows.
Collapse
|
9
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Tamma R, Ingravallo G, Annese T, Gaudio F, Perrone T, Musto P, Specchia G, Ribatti D. Tumor Microenvironment and Microvascular Density in Follicular Lymphoma. J Clin Med 2022; 11:jcm11051257. [PMID: 35268349 PMCID: PMC8911525 DOI: 10.3390/jcm11051257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Follicular lymphoma (FL) is a slowly progressive disease and constitutes the second most common non-Hodgkin lymphoma. Biological factors, such as the tumor microenvironment and the host response, are determinants in the outcome of FL but the experimental data about microenvironment and tumor cells in FL are variable and contradictory. In this morphometric study, we analyzed by immunohistochemistry the cellular components of the tumor microenvironment and correlated these data with the microvascular vascular density in three different grades of FL lymph node biopsies, comparing the results to healthy lymph node controls. The results indicated a significant increase in the number of CD68+ and CD163+ macrophages in all three analyzed FL grades. Tryptase+ mast cells resulted in an increase only in grade 1. PDL-1+ cells, CD4- and CD8-lymphocytes number results were reduced in FL samples. The higher number of CD34+ microvessels in the FL grades 1 and 2 of samples positively correlated with CD68+ and CD163+ cells, underlining the important angiogenic potential of this subset of macrophages.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
- Correspondence: (R.T.); (D.R.); Tel.: +39-080-5478323 (R.T); Fax: +39-080-5478310 (R.T.)
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70124 Bari, Italy;
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Francesco Gaudio
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Tommasina Perrone
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Pellegrino Musto
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
- Correspondence: (R.T.); (D.R.); Tel.: +39-080-5478323 (R.T); Fax: +39-080-5478310 (R.T.)
| |
Collapse
|
11
|
Ingravallo G, Tamma R, Opinto G, Annese T, Gaudio F, Specchia G, Perrone T, Musto P, Cazzato G, Bellitti E, Capodiferro S, Maiorano E, Ribatti D. The Effect of the Tumor Microenvironment on Lymphoid Neoplasms Derived from B Cells. Diagnostics (Basel) 2022; 12:573. [PMID: 35328127 PMCID: PMC8947733 DOI: 10.3390/diagnostics12030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphomas are characteristic tumors surrounded by an inflammatory microenvironment. The cells of the microenvironment are essential for the growth and survival of neoplastic cells and are recruited through the effect of cytokines/chemokines. Lymphomas include heterogeneous groups of neoplasms infiltrating various lymphoid structures which may arise from B lymphocytes, T lymphocytes, and natural killer (NK) cells at various stages of their differentiation state. In this review article, we analyze the literature data concerning the involvement of the tumor microenvironment (TME) in the progression of lymphomas and the recent advances in the analysis of microenvironment components in the most common forms: some mature B cell lymphoma neoplasms and classic Hodgkin lymphomas. The complex crosstalk between the TME and tumor cells led to the discovery of many mechanisms usable as molecular-targeted therapy through the control of diverse elements of the TME, varying from inhibitors of angiogenic cytokines and their receptors to the regulation of cells' activities and the novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| | - Giuseppina Opinto
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| | - Francesco Gaudio
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Tommasina Perrone
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Saverio Capodiferro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy;
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| |
Collapse
|
12
|
Guidolin D, Tamma R, Annese T, Tortorella C, Ingravallo G, Gaudio F, Perrone T, Musto P, Specchia G, Ribatti D. Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma. Clin Exp Med 2021; 21:573-578. [PMID: 33959827 PMCID: PMC8505287 DOI: 10.1007/s10238-021-00716-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvironment chracteristics are important in its progression. The aim of this study was to evaluate tumor T, B cells, macrophages and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells. Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate description of the functional status of the tumor, useful for patient prognosis.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Francesco Gaudio
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Bari, Italy
| | - Tommasina Perrone
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Bari, Italy
| | - Pellegrino Musto
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
13
|
Laddaga FE, Ingravallo G, Mestice A, Tamma R, Perrone T, Maiorano E, Ribatti D, Specchia G, Gaudio F. Correlation between circulating blood and microenvironment T lymphocytes in diffuse large B-cell lymphomas. J Clin Pathol 2021; 75:493-497. [PMID: 34011621 DOI: 10.1136/jclinpath-2020-207048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is characterised by marked clinical and biological heterogeneity, attributable to the tumour cells and their microenvironment. METHODS In this study, we investigated circulating subsets of blood lymphocytes and monocytes and their relationship with T cells in the tumour microenvironment (TME) in chemoresistant and chemosensitive patients with DLBCL. RESULTS The study showed that (1) absolute lymphocyte count (ALC) and CD3+ and CD4+ cells were reduced in chemoresistant patients compared with chemosensitive patients; (2) lymphocyte:monocyte ratio (LMR) showed a positive correlation with peripheral blood CD3+ and CD4+ cells; (3) ALC, LMR, peripheral blood CD3+ and CD4+ cells showed a positive correlation with T cells in the TME. CONCLUSIONS Overall, these data suggest that DLBCL with high TME T cells display a pre-existing antitumour immune response. In the rituximab-containing regimen, TME T cells are stimulated further to participate in the immune response against lymphoma cells. In contrast, DLBCL lymphomas with low T-cell infiltration reflect the absence of a pre-existing antitumour immunity and have a lower likelihood of obtaining an optimal response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Mestice
- Hematology and Stem Cell Transplantation Unit, AOU Consorziale Policlinico, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Tommasina Perrone
- Hematology and Stem Cell Transplantation Unit, AOU Consorziale Policlinico, Bari, Italy
| | | | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | | | - Francesco Gaudio
- Hematology and Stem Cell Transplantation Unit, AOU Consorziale Policlinico, Bari, Italy
| |
Collapse
|
14
|
Inflammatory Cells in Diffuse Large B Cell Lymphoma. J Clin Med 2020; 9:jcm9082418. [PMID: 32731512 PMCID: PMC7463675 DOI: 10.3390/jcm9082418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.
Collapse
|
15
|
Solimando AG, Annese T, Tamma R, Ingravallo G, Maiorano E, Vacca A, Specchia G, Ribatti D. New Insights into Diffuse Large B-Cell Lymphoma Pathobiology. Cancers (Basel) 2020; 12:cancers12071869. [PMID: 32664527 PMCID: PMC7408689 DOI: 10.3390/cancers12071869] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL), accounting for about 40% of all cases of NHL. Analysis of the tumor microenvironment is an important aspect of the assessment of the progression of DLBCL. In this review article, we analyzed the role of different cellular components of the tumor microenvironment, including mast cells, macrophages, and lymphocytes, in the tumor progression of DLBCL. We examined several approaches to confront the available pieces of evidence, whereby three key points emerged. DLBCL is a disease of malignant B cells spreading and accumulating both at nodal and at extranodal sites. In patients with both nodal and extranodal lesions, the subsequent induction of a cancer-friendly environment appears pivotal. The DLBCL cell interaction with mature stromal cells and vessels confers tumor protection and inhibition of immune response while delivering nutrients and oxygen supply. Single cells may also reside and survive in protected niches in the nodal and extranodal sites as a source for residual disease and relapse. This review aims to molecularly and functionally recapitulate the DLBCL–milieu crosstalk, to relate niche and pathological angiogenic constitution and interaction factors to DLBCL progression.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70100 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| |
Collapse
|
16
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|