1
|
Wang X, Deng Y, He G, Lai S, Li Y, Zhang S, He Y, Han Y, Zhang L, Su Y, Liu F, Yi H. A retrospective study of an irradiation-based conditioning regimen and chidamide maintenance therapy in T-ALL/LBL. Hematology 2024; 29:2356300. [PMID: 38776229 DOI: 10.1080/16078454.2024.2356300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVES T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) are highly malignant and aggressive hematologic tumors for which there is no standard first-line treatment. Chidamide, a novel histone deacetylase inhibitor, shows great promise. We assessed the efficacy and safety of an irradiation-containing conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT) and post-transplantation chidamide maintenance in patients with T-ALL/LBL. METHODS We retrospectively analyzed the clinical data of six patients with T-ALL/LBL who underwent allo-HSCT with a radiotherapy-containing pretreatment regimen and post-transplant chidamide maintenance therapy. The endpoints were relapse, graft-versus-host disease (GVHD), transplant-related mortality (TRM), progression-free survival (PFS), overall survival (OS), and adverse events (AEs). RESULTS All of the patients had uneventful post-transplant hematopoietic reconstitution, and all achieved complete molecular remission within 30 days. All six patients survived, and two relapsed with a median relapse time of 828.5 (170-1335) days. The 1-year OS rate was 100%, the 2-year PFS rate was 66.7%, and the TRM rate was 0%. After transplantation, two patients developed grade I-II acute GVHD (2/6); grade III-IV acute and chronic GVHD were not observed. The most common AEs following chidamide administration were hematological AEs, which occurred to varying degrees in all patients; liver function abnormalities occurred in two patients (grade 2), and symptoms of malaise occurred in one patient (grade 1). CONCLUSION Chidamide maintenance therapy after T-ALL/LBL transplantation is safe, but the efficacy needs to be further investigated.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Yan Deng
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Guangcui He
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Sihan Lai
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Yecheng Li
- Department of Hematology, Chengdu BOE Hospital, Chengdu, People's Republic of China
| | - Shan Zhang
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Ying He
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Ying Han
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Lilan Zhang
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, People's Republic of China
| | - Yi Su
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| | - Fang Liu
- Department of Hematology, Chengdu BOE Hospital, Chengdu, People's Republic of China
| | - Hai Yi
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Xiao T, Chen Z, Xie Y, Yang C, Wu J, Gao L. Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia. Ther Adv Hematol 2024; 15:20406207241283277. [PMID: 39421716 PMCID: PMC11483798 DOI: 10.1177/20406207241283277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary treatment for AL involves combination chemotherapy as the cornerstone of comprehensive measures, alongside hematopoietic stem cell transplantation as a radical approach. However, despite these interventions, mortality rates remain high, particularly among refractory/recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent studies have highlighted the potential of acetylation regulation as a novel treatment pathway. Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation and development of tumor cells through diverse pathways, simultaneously impacting the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing survival rates and achieving a complete response in both acute myeloid leukemia and acute T-lymphoblastic leukemia patients. This article provides a comprehensive review of the advancements in HDACi therapy for AL, shedding light on its potential implications for clinical practice.
Collapse
Affiliation(s)
- Tong Xiao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhigang Chen
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yutong Xie
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Yang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhong Wu
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
3
|
Li X, Liu B, Huang D, Ma N, Xia J, Zhao X, Duan Y, Li F, Lin S, Tang S, Li Q, Rao J, Zhang X. Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis. Chin Med J (Engl) 2024:00029330-990000000-01266. [PMID: 39445538 DOI: 10.1097/cm9.0000000000003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND T-cell lymphoblastic lymphoma/leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL. METHODS HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse. RESULTS The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo. CONCLUSIONS Our study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Collapse
Affiliation(s)
- Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Fu Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Shijia Lin
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Shuhan Tang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing 400037, China
| |
Collapse
|
4
|
Song J, Liu J, Guo D, Li H, Fan S. Chidamide maintenance therapy after allo-HSCT in SET-NUP214 fusion positive T-ALL patients: A report of two cases. Transpl Immunol 2024; 87:102119. [PMID: 39233093 DOI: 10.1016/j.trim.2024.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly invasive hematological malignancy originated from T-lineage progenitor cells. The clonal proliferation and aggregation of primordial cells in bone marrow inhibit normal hematopoietic function, resulting in a series of hematocytopenia and infiltration symptoms. SET-NUP214 fusion is a recurrent event that is common in adult male T-ALL patients. It originates from chromosome del(9)(q34.11; q34.13) or t(9; 9)(q34; q34). Hematopoietic stem cell transplantation (HSCT) can significantly improve the survival rate of these patients. Due to the poor prognosis of patients and high relapse rate after remission, more effective strategies need to be proposed to improve prognosis and prevent relapse. Chidamide is a novel oral benzamide histone deacetylase inhibitor (HDACi) that can exert anti-tumor effects through multiple mechanisms. Here we report chidamide maintenance therapy after allo-HSCT in patients with SET-NUP214 fusion positive T-ALL. Both patients improved effectively during follow-up, confirming the efficacy of chidamide in improving the condition of these patients and may provide valuable clinical information for the treatment of this rare and understudied disease.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jie Liu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Dan Guo
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Huibo Li
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Shengjin Fan
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
Hu J, Wang J, Wang Z. The efficacy and safety of chidamide in combination with etoposide and glucocorticoids for the treatment of hemophagocytic lymphohistiocytosis in adult patients: an open-label, single-center study. Front Immunol 2024; 15:1415597. [PMID: 39040100 PMCID: PMC11260630 DOI: 10.3389/fimmu.2024.1415597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening condition characterized by hyperinflammation and organ failure, with a high mortality rate. Current first-line treatments for adult patients have limited efficacy and significant toxicity. The novel selective histone deacetylase inhibitor (HDACi), chidamide, has shown promise in preclinical studies for the potential treatment of HLH. Methods An open-label, single-center study was conducted to evaluate the efficacy and safety of chidamide in combination with etoposide and glucocorticoids for the treatment of HLH in adult patients. Seventeen patients who fulfilled at least five of the eight HLH-2004 criteria were enrolled and treated with the combination therapy. The primary outcome was overall response rate (ORR), and secondary outcomes included survival, safety and tolerability, and changes in laboratory indicators. Results A total of 17 HLH patients who met the inclusion criteria were enrolled in this study, with a male to female ratio of 1.8:1. The age range at enrollment was 31 to 71 years old, with a median age of 52 years old. The ORR was 76.5% (13/17 patients), with a complete response (CR) rate of 17.6% (3/17 patients) and a partial response (PR) rate of 58.8% (10/17 patients). The median overall survival (OS) was not achieved, with OS at 6 months and 12 months being 81% and 65%, respectively. The median progression free survival (PFS) was not achieved, with PFS at 6 months and 12 months being 68% and 55%, respectively. Hematologic toxicities is the most common. Safety profile was favorable, with very few cases of grade 3/4 toxicities observed. The results showed that the levels of sCD25, platelets, aspartate aminotransferase, lactate dehydrogenase, and albumin in these patients were significantly improved 3 weeks after treatment. Conclusion The addition of chidamide to etoposide and glucocorticoids may be a promising new treatment option for patients with HLH, with a high ORR, manageable safety profile, and significant improvement in laboratory indicators. Further research is needed to confirm these findings and determine the optimal dosing and duration of therapy.
Collapse
Affiliation(s)
| | | | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
7
|
Cao XY, Zhang JP, Lu Y, Zhao YL, Liu DY, Xiong M, Sun RJ, Wei ZJ, Zhou JR, Zhang X, Yang JF, Li J, Lu P. A safety and efficacy study of allogeneic haematopoietic stem cell transplantation for refractory and relapsed T-cell acute lymphoblastic leukaemia/lymphoblastic lymphoma patients who achieved complete remission after autologous CD7 chimeric antigen receptor T-cell therapy. Br J Haematol 2024; 204:2351-2364. [PMID: 38613241 DOI: 10.1111/bjh.19445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
CD7-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown promising initial complete remission (CR) rates in patients with refractory or relapsed (r/r) T-cell acute lymphoblastic leukaemia and lymphoblastic lymphoma (T-ALL/LBL). To enhance the remission duration, consolidation with allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered. Our study delved into the outcomes of 34 patients with r/r T-ALL/LBL who underwent allo-HSCT after achieving CR with autologous CD7 CAR-T therapy. These were compared with 124 consecutive T-ALL/LBL patients who received allo-HSCT in CR following chemotherapy. The study revealed that both the CAR-T and chemotherapy cohorts exhibited comparable 2-year overall survival (OS) (61.9% [95% CI, 44.1-78.1] vs. 67.6% [95% CI, 57.5-76.9], p = 0.210), leukaemia-free survival (LFS) (62.3% [95% CI, 44.6-78.4] vs. 62.0% [95% CI, 51.8-71.7], p = 0.548), non-relapse mortality (NRM) rates (32.0% [95% CI, 19.0-54.0] vs. 25.3% [95% CI, 17.9-35.8], p = 0.288) and relapse incidence rates (8.8% [95% CI, 3.0-26.0] vs. 15.8% [95% CI, 9.8-25.2], p = 0.557). Patients aged ≤14 in the CD7 CAR-T group achieved high 2-year OS and LFS rates of 87.5%. Our study indicates that CD7 CAR-T therapy followed by allo-HSCT is not only effective and safe for r/r T-ALL/LBL patients but also on par with the outcomes of those achieving CR through chemotherapy, without increasing NRM.
Collapse
Affiliation(s)
- Xing-Yu Cao
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Jian-Ping Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Yue Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Yan-Li Zhao
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - De-Yan Liu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Min Xiong
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Rui-Juan Sun
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Zhi-Jie Wei
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Jia-Rui Zhou
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Xian Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Jun-Fang Yang
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
| | - Jingjing Li
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Hospital, Beijing, China
- Beijing Lu Daopei Institute of Hematology, Beijing, China
| |
Collapse
|
8
|
Zhang Y, Chen Z, Liu Y, Han L, Jiang W, Wang Q, Shi J, Lu L, Li J, Zhang M, Huang Y, Yang Y, Hou X, Zhang L, Li J, Fang W, Chen G. Chidamide plus envafolimab as subsequent treatment in advanced non-small cell lung cancer patients resistant to anti-PD-1 therapy: A multicohort, open-label, phase II trial with biomarker analysis. Cancer Med 2024; 13:e7175. [PMID: 38597130 PMCID: PMC11004905 DOI: 10.1002/cam4.7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Combination of chidamide and anti-PD-L1 inhibitor produce synergistic anti-tumor effect in advanced NSCLC patients resistant to anti-PD-1 treatment. However, the effect of chidamide plus envafolimab has not been reported. AIMS This study aimed to evaluate the efficacy of chidamide plus envafolimab in advanced NSCLC patients resistant toanti-PD-1 treatment. MATERIALS AND METHODS Eligible advanced NSCLC patients after resistant to anti-PD-1 therapy received chidamide and envafolimab. The primary endpoint was objective response rate (ORR). The secondary end points included disease control rate (DCR), progression-free survival (PFS), and safety. The expression of histone deacetylase 2 (HDAC2), PD-L1, and blood TMB (bTMB) was also analyzed. RESULTS After a median follow-up of 8.1 (range: 7.6-9.2) months, only two patients achieved partial response. The ORR was 6.7% (2/30), DCR was 50% (15/30), and median PFS (mPFS) was 3.5 (95% confidence interval: 1.9-5.5) months. Biomarker analysis revealed that patients with high-level HDAC2 expression had numerically superior ORR (4.3% vs. 0), DCR (52.2% vs. 0) and mPFS (3.7 vs. 1.4m). Patients with negative PD-L1 had numerically superior DCR (52.2% vs. 33.3%) and mPFS (3.7m vs. 1.8m), so were those with low-level bTMB (DCR: 59.1% vs. 16.7%, mPFS: 3.8 vs.1.9m). Overall safety was controllable. DISCUSSION High HDAC2patients showed better ORR, DCR, and PFS. In addition, patient with negative PD-L1 and low-level bTMB had better DCR and PFS. This may be related to the epigenetic function of chidamide. However, the sample size was not big enough, so it is necessary to increase sample size to confirm the conclusion. CONCLUSION Combination of chidamide and envafolimab showed efficacy signals in certain NSCLC patients. But further identification of beneficial population is necessary for precision treatment.
Collapse
Affiliation(s)
- Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zihong Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liang Han
- Department of OncologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Wei Jiang
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Qiming Wang
- Department of Internal Medicine, Henan Cancer HospitalAffiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jianhua Shi
- Department of OncologyLinyi Cancer HospitalLinyiShandongChina
| | - Liqin Lu
- Department of Medical OncologyThe People's Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Jianying Li
- Department of OncologyNantong Tumor HospitalNantongJiangsuChina
| | - Mingjun Zhang
- Department of OncologyThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xue Hou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
9
|
[Chinese expert consensus on diagnosis and treatment of adult early T cell precursor acute lymphoblastic leukemia (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:977-982. [PMID: 38503519 PMCID: PMC10834867 DOI: 10.3760/cma.j.issn.0253-2727.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 03/21/2024]
|
10
|
Guo W, Cao Y, Liu J, Zheng X, Wang M, Zheng Y, Zhang X, Zhai W, Chen X, Zhang R, Ma Q, Yang D, Wei J, He Y, Pang A, Feng S, Han M, Jiang E. Chidamide maintenance therapy in high-risk T-ALL/T-LBL after allo-HSCT: a prospective, single-center, single-arm study. Bone Marrow Transplant 2023; 58:1163-1166. [PMID: 37474728 DOI: 10.1038/s41409-023-02045-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xinhui Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
11
|
Huang YH, Wan CL, Dai HP, Xue SL. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 2023; 102:2001-2013. [PMID: 37227492 DOI: 10.1007/s00277-023-05286-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
T cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is an aggressive malignancy of progenitor T cells. Despite significant improvements in survival of T-ALL/LBL over the past decades, treatment of relapsed and refractory T-ALL (R/R T-ALL/LBL) remains extremely challenging. The prognosis of R/R T-ALL/LBL patients who are intolerant to intensive chemotherapy remains poor. Therefore, innovative approaches are needed to further improve the survival of R/R T-ALL/LBL patients. With the widespread use of next-generation sequencing in T-ALL/LBL, a range of new therapeutic targets such as NOTCH1 inhibitors, JAK-STAT inhibitors, and tyrosine kinase inhibitors have been identified. These findings led to pre-clinical studies and clinical trials of molecular targeted therapy in T-ALL/LBL. Furthermore, immunotherapies such as CD7 CAR T cell therapy and CD5 CAR T cell therapy have shown profound response rate in R/R T-ALL/LBL. Here, we review the progress of targeted therapies and immunotherapies for T-ALL/LBL, and look at the future directions and challenges for the further use of these therapies in T-ALL/LBL.
Collapse
Affiliation(s)
- Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
12
|
Cao HY, Li L, Xue SL, Dai HP. Chidamide: Targeting epigenetic regulation in the treatment of hematological malignancy. Hematol Oncol 2023; 41:301-309. [PMID: 36251458 DOI: 10.1002/hon.3088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Epigenetic alterations frequently participate in the onset of hematological malignancies. Histone deacetylases (HDACs) are essential for regulating gene transcription and various signaling pathways. Targeting HDACs has become a novel treatment option for hematological malignancies. Chidamide is the first oral selective HDAC inhibitor for HDAC1, HDAC2, HDAC3, and HDAC10 and was first approved for the treatment of R/R peripheral T-cell lymphoma by the China Food and Drug Administration in 2014. Chidamide was also approved under the name Hiyasta (HBI-8000) in Japan in 2021. In vitro studies revealed that chidamide could inhibit proliferation and induce apoptosis via cell cycle arrest and the regulation of apoptotic proteins. In clinical studies, chidamide was also efficacious in multiple myeloma, acute leukemia and myelodysplastic syndrome. This review includes reported experimental and clinical data on chidamide monotherapy or chidamide treatment in combination with chemotherapy for various hematological malignancies, offering a rationale for the renewed exploration of this drug.
Collapse
Affiliation(s)
- Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
[The consensus of the diagnosis and treatment of adult T-cell lymphoblastic lymphoma in China (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:353-358. [PMID: 37550183 PMCID: PMC10440620 DOI: 10.3760/cma.j.issn.0253-2727.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/09/2023]
|
14
|
Zhang Y, Li C, Du M, Jiang H, Luo W, Tang L, Kang Y, Xu J, Wu Z, Wang X, Huang Z, Zhang Y, Wu D, Chang AH, Hu Y, Mei H. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies. Blood Cancer J 2023; 13:61. [PMID: 37095094 PMCID: PMC10125858 DOI: 10.1038/s41408-023-00822-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) therapy remains to be investigated in T-cell malignancies. CD7 is an ideal target for T-cell malignancies but is also expressed on normal T cells, which may cause CAR-T cell fratricide. Donor-derived anti-CD7 CAR-T cells using endoplasmic reticulum retention have shown efficacy in patients with T-cell acute lymphoblastic leukemia (ALL). Here we launched a phase I trial to explore differences between autologous and allogeneic anti-CD7 CAR-T therapies in T-cell ALL and lymphoma. Ten patients were treated and 5 received autologous CAR-T therapies. No dose-limiting toxicity or neurotoxicity was observed. Grade 1-2 cytokine release syndrome occurred in 7 patients, and grade 3 in 1 patient. Grade 1-2 graft-versus-host diseases were observed in 2 patients. Seven patients had bone marrow infiltration, and 100% of them achieved complete remission with negative minimal residual disease within one month. Two-fifths of patients achieved extramedullary or extranodular remission. The median follow-up was 6 (range, 2.7-14) months and bridging transplantation was not administrated. Patients treated with allogeneic CAR-T cells had higher remission rate, less recurrence and more durable CAR-T survival than those receiving autologous products. Allogeneic CAR-T cells appeared to be a better option for patients with T-cell malignancies.
Collapse
Affiliation(s)
- Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Chenggong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Mengyi Du
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Huiwen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Wenjing Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yun Kang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jia Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Zhuolin Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Xindi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China
| | - Di Wu
- Beijing GoBroad Hospital Management Co. Ltd, Beijing, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China.
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| |
Collapse
|
15
|
Song Y, Chen S, Liu C, Chen L, Wang W, Wu B, Liang Y. Chemo-free maintenance therapy in adult T-cell acute lymphoblastic leukemia: A case report and literature review. Front Pharmacol 2023; 14:1051305. [PMID: 36873995 PMCID: PMC9981645 DOI: 10.3389/fphar.2023.1051305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Maintenance therapy in adult T-cell acute lymphoblastic leukemia (T-ALL) is the longest phase but with limited option. The classic drugs used in the maintenance phase such as 6-mercaptopurine, methotrexate, corticosteroid and vincristine have potentially serious toxicities. Optimizing therapy in the modern age, chemo-free maintenance therapy regimens for patients with T-ALL may dramatically improve the maintenance therapeutic landscape. We report here the combination of Anti-programmed cell death protein 1 antibody and histone deacetylase inhibitor as chemo-free maintenance treatment in a T-ALL patient with literature review, thus providing a unique perspective in addition to valuable information which may inform novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingyi Wu
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Li XY, Han XW, Huang K, Zhang YT, Xu HG, Zhou DH, Xu LH, Fang JP. Chidamide as maintenance after chemotherapy or hematopoietic stem cell transplantation in 27 children with T-cell lymphoblastic leukemia: A real-world prospective study. Front Med (Lausanne) 2023; 10:1096529. [PMID: 36817761 PMCID: PMC9932021 DOI: 10.3389/fmed.2023.1096529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background The long-term overall survival of children with T-cell acute lymphoblastic leukemia (T-ALL) is limited to approximately 80-85% because of a high incidence of relapse after achieving remission with intensive chemotherapy and hematopoietic stem cell transplantation (HSCT). Novel treatment strategies inducing long-term remission are needed to improve the outcome. Histone deacetylase inhibitors (HDACis) have been reported to be effective in a series of T-ALL cases. Preclinical studies suggested that T-ALL cells are sensitive to Chidamide, which is a selective HDACi. Methods This preliminary clinical study evaluated the efficacy and safety of Chidamide in combination with chemotherapy or post-HSCT for children with T-ALL at a dose of 0.5 mg/kg weight of patient twice per week for at least 6 months. Results In total, 27 children with a mean age of 7.88 years were included. The high-risk proportion was 66.7%. After a median follow-up period of 37.8 months (9.5-67.9 months), the overall survival and event-free survival in the patients treated with Chidamide were 94.1 and 95.2%, respectively. All patients except two maintained persistent remission with <0.01% blast cells in minimal residual disease. Conclusion The combination therapy with Chidamide in a case series of T-ALL shows the promising clinical efficacy and good safety in children. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2000030357.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia-Wei Han
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Ting Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Gui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Jian-Pei Fang,
| |
Collapse
|
17
|
Kong Q, Wang J, Zhang Y, Hu J, Yu M, Wu L, Wang Z. Misdiagnosis of adult primary hemophagocytic lymphohistiocytosis as NK/T-cell lymphoma: A case report. EJHAEM 2022; 3:1367-1373. [PMID: 36467838 PMCID: PMC9713033 DOI: 10.1002/jha2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/17/2023]
Abstract
We reported a case of a 19-year-old male patient with central nervous system symptoms as the main clinical manifestations, and multiple intracranial and abdominal occupying lesions visualized by imaging examinations, who was initially misdiagnosed as NK/T-cell lymphoma but poorly responsive to the treatment. Finally, he was diagnosed as familial hemophagocytic lymphohistiocytosis type-2 by genome sequencing, perforin test and pedigree study. The patient survived well after allogeneic hematopoietic stem cell transplantation. Central nervous system symptoms could be the main clinical manifestations in patients with primary hemophagocytic lymphohistiocytosis , whose early-stage manifestations of blood system were usually atypical, easily leading to misdiagnosis. In clinical practice, primary hemophagocytic lymphohistiocytosis should be considered in patients with central nervous system symptoms and unknown causes. The combination of rapid immunological function test and genome sequencing contributes to the diagnosis of primary hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Qi Kong
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jingshi Wang
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yanlin Zhang
- Department of PathologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Junxia Hu
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Mingzhu Yu
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lin Wu
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Zhao Wang
- Department of HematologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Qi HZ, Xu J, Yang QQ, Lin R, Wang ZX, Zhao K, Wang Q, Zhou X, Fan ZP, Huang F, Xu N, Xuan L, Jin H, Sun J, Gale RP, Zhou HS, Liu QF. Effect of pediatric- versus adult-type chemotherapy regimens on outcomes of allogeneic hematopoietic stem cell transplants for adult T-cell acute lymphoblastic leukemia in first complete remission. Bone Marrow Transplant 2022; 57:1704-1711. [PMID: 36042299 DOI: 10.1038/s41409-022-01796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
The optimal chemotherapy regimen pre-transplantation for adult T-cell acute lymphoblastic leukemia (T-ALL) patients remains unknown. Here, we compared the transplant outcomes in 127 subjects receiving pediatric- (N = 57) or adult-type (N = 70) regimens pre-transplant. The corresponding 3-year cumulative incidences of relapse (CIR) was 7% (95% CI: 3-11%) and 29% (95% CI: 23-35%; P = 0.02), leukemia-free survivals (LFS) was 86% (95% CI: 81-91%) and 57% (95% CI: 51-63%; P = 0.003), overall survivals (OS) was 88% (95% CI: 84-92%) and 58% (95% CI: 52-64%; P = 0.002), the 1-year NRM was 4% (95% CI: 1-7%) and 9% (95% CI: 4-14%; P = 0.40). Multivariate analysis showed that pediatric-type regimen was associated with lower CIR (Hazard Ratio [HR] = 0.31 [95% CI: 0.09-1.00]; P = 0.05), better LFS (HR = 0.34 [95% CI: 0.15-0.78]; P = 0.01) and OS (HR = 0.30 [95% CI: 0.13-0.72]; P = 0.01). Our results suggested that adult T-ALL patients undergoing allo-HSCT might benefit from pediatric-type chemotherapy.
Collapse
Affiliation(s)
- Han-Zhou Qi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Qian Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Xiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Robert Peter Gale
- Hematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Xiao J, Cai Z, Wang H, Li X, Zhou B, Liu Y, Wang Y, Xu P, Wang L, Wu D, Dou L, Zhou H, Xu Y. The Clinical Characteristics and Prognosis of AYA and Older Adult ETP-ALL/LBL: A Real-World Multicenter Study in China. Front Oncol 2022; 12:846573. [PMID: 35734596 PMCID: PMC9207171 DOI: 10.3389/fonc.2022.846573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Early T-cell precursor (ETP) lymphoblastic leukemia/lymphoma is a high-risk T lymphoblastic leukemia/lymphoma (T-ALL/LBL) subgroup. We performed a real-world multicenter study to explore the clinical characteristics and prognosis of adolescent and young adults (AYA) and older adult ETP leukemia/lymphoma. A total of 103 patients with ETP-ALL/LBL in five centers in China between January 2016 and February 2021 were included in this study. The median age was 29 years (range, 15–70 years). Next-generation sequencing was performed in 94 patients and revealed that NOTCH1 (35.1%, 33 cases) was the most frequently mutated gene, followed by JAK3 (16.0%, 15 cases), PHF6 (13.80%, 13 cases) and EZH2 (11.70%, 11 cases). Complete remission (CR) was obtained in 74.2% (72/97) of patients, and 6 relapsed/refractory patients received a decitabine combined with AAG priming regimen as reinduction therapy with a CR rate of 50%. With a median follow-up of 18 months (0.5–60 months), the 2-year overall survival (OS) and relapse-free survival (RFS) rates for the entire cohort were 54% and 57.7%, respectively. Allogeneic stem cell transplantation (allo-SCT) was performed in 59.8% (58/97) of patients. After landmark analysis at 6 months, the 2-year OS rates was 77% of patients with allo-SCT at CR1 and 25% of patients with chemotherapy alone (p < 0.001). A multivariate analysis suggested that allo-SCT and CR after the first course induction were independent prognostic factors for OS. Collectively, we reported the largest cohort study with AYA and older adult ETP-ALL/LBL, and we found that ETP-ALL/LBL was highly invasive and had a poor long-term prognosis. Allo-SCT could significantly improve ETP-ALL/LBL patient survival.
Collapse
Affiliation(s)
- Jinyan Xiao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuekai Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Biqi Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Yujie Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Ying Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Youth Committee of the Chinese Society of Hematology, Suzhou, China
| | - Li Wang
- The Youth Committee of the Chinese Society of Hematology, Suzhou, China.,Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Liping Dou
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,The Youth Committee of the Chinese Society of Hematology, Suzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Youth Committee of the Chinese Society of Hematology, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou, China.,The Youth Committee of the Chinese Society of Hematology, Suzhou, China
| |
Collapse
|
20
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| |
Collapse
|
21
|
He ZD, Yang HY, Zhou SS, Wang M, Mo QL, Huang FX, Peng ZG. Chidamide combined with traditional chemotherapy for primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma: A case report. World J Clin Cases 2022; 10:1341-1348. [PMID: 35211568 PMCID: PMC8855196 DOI: 10.12998/wjcc.v10.i4.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Traditional chemotherapy has benefited many patients with non-Hodgkin's lymphoma, but results in a very poor response in patients with rare lymphomas or refractory lymphomas. Previous studies have shown that chidamide has potential anti-lymphoma activity and reverses lymphoma cell chemoresistance to increase the chemosensitivity of lymphoma cells to traditional chemotherapy.
CASE SUMMARY A 14-year-old boy was admitted to our hospital with a 5-d history of generalized erythema, papules, and blisters. Initially, the disease was refractory to potent anti-allergic and anti-infective treatment, and his condition progressively worsened. Skin biopsy revealed primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma. Considering that the disease is extremely rare in clinical practice, existing case reports have shown poor efficacy with traditional chemotherapy alone. We recommend chidamide combined with traditional chemotherapy for treatment. The regimen was as follows: Chidamide 30 mg/biw, cyclophosphamide 1100 mg/d1, pirarubicin 70 mg/d1, vincristine 2 mg/d1, dexamethasone 20 mg/d1-5, etoposide 100 mg/d1-5, in a 21 d cycle. The treatment effect was considerable, and complete remission was achieved after 4 cycles of treatment, after which the patient completed a total of 6 cycles of treatment. Subsequently, the patient regularly took chidamide 20 mg/biw as maintenance therapy for 1 year. To date, the patient has been disease-free for 3 years.
CONCLUSION This case suggests that the combination of chidamide and traditional chemotherapy is effective in primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma.
Collapse
Affiliation(s)
- Zhen-Dong He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Sheng Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Man Wang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Li Mo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Feng-Xiang Huang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Ma YY, Zhang QC, Tan X, Zhang X, Zhang C. T-cell lymphoblastic lymphoma with extensive thrombi and cardiac thrombosis: A case report and review of literature. World J Clin Cases 2021; 9:9607-9616. [PMID: 34877297 PMCID: PMC8610884 DOI: 10.12998/wjcc.v9.i31.9607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND T-lymphoblastic lymphoma (T-LBL), a neoplasm of immature T-cell precursors or lymphoblasts, is a clinically aggressive disease. In general, patients with T-LBL have a poor prognosis and often have high-risk clinical features, such as mediastinal masses, central nervous system infiltration, or other indications of high tumor burden; however, extensive thrombi are not common.
CASE SUMMARY A 27-year-old woman presented to the Department of General Surgery with cervical lymph node enlargement accompanied by cough, wheezing, and palpitation for 3 mo. A complete blood count showed a white blood cell count of 1.6 × 109/L, a hemoglobin concentration of 135 g/L, and a platelet count of 175 × 109/L. A biopsy sample of the lymph node mass indicated T-cell lymphoblastic lymphoma, and the bone marrow immunophenotype indicated early T-cell precursor acute lymphoblastic leukemia (ETP-ALL). Abdominal and chest enhanced computed tomography showed thrombi in the superior vena cava, inferior vena cava, right hepatic vein, azygos vein, and right atrium. The ultrasonic cardiogram showed a thrombus in the right atrium of 5.23 cm × 4.21 cm. The patient was first treated with low-dose dexamethasone and low-molecular-weight heparin followed by 2 cycles of chemotherapy. Then, the ultrasonic cardiogram showed that thrombus in the right atrium had disappeared and the patient had achieved complete cytological remission. The maintenance therapy of the patient included chidamide 30 mg/wk, and she survived for 6 mo.
CONCLUSION The incidence of venous thromboembolism is high in lymphoma; however, extensive thrombi with heart thrombosis is rare. Chemotherapy is the major method of treatment for lymphoma with thrombosis. We successfully treated a patient with T-LBL complicated by extensive thrombi, including a large right atrial thrombus, with combined chemotherapy containing liposomal doxorubicin, and the patient achieved complete remission. Maintenance therapy with chidamide was also effective.
Collapse
Affiliation(s)
- Ying-Ying Ma
- Department of Hematology, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Quan-Chao Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Xu Tan
- Department of Hematology, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Department of Hematology, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Cheng Zhang
- Department of Hematology, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
23
|
Xi M, Guo S, Bayin C, Peng L, Chuffart F, Bourova-Flin E, Rousseaux S, Khochbin S, Mi JQ, Wang J. Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Front Med 2021; 16:442-458. [PMID: 34669156 DOI: 10.1007/s11684-021-0877-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Mengping Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Shanshan Guo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Caicike Bayin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Florent Chuffart
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Ekaterina Bourova-Flin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Sophie Rousseaux
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Saadi Khochbin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| |
Collapse
|
24
|
A Chinese Child Presented with Early T Cell Precursor Lymphoblastic Lymphoma. Case Rep Hematol 2021; 2021:5561860. [PMID: 34621551 PMCID: PMC8492265 DOI: 10.1155/2021/5561860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
T cell lymphoblastic lymphoma (T-LBL) is regarded as the leukemic phase of T cell acute lymphoblastic leukemia (T-ALL). The early T cell precursors ALL/LBL (ETP-LBL/ALL) are derived from thymic cells at the ETP differentiation stage and recognized as a high-risk subgroup of T-ALL/LBL. Most of these cases presented with ALL at the disease onset, but the ETP-LBL phase is uncommon. Here, we report a patient who presented with ETP-LBL at the disease onset. In this case, ALL developed even despite receiving chemotherapy, but the patient achieved a complete remission with intensive chemotherapy.
Collapse
|
25
|
Therapeutic Interaction of Apatinib and Chidamide in T-Cell Acute Lymphoblastic Leukemia through Interference with Mitochondria Associated Biogenesis and Intrinsic Apoptosis. J Pers Med 2021; 11:jpm11100977. [PMID: 34683119 PMCID: PMC8540063 DOI: 10.3390/jpm11100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) shows poor clinical outcome and has limited therapeutic options, indicating that new treatment approaches for this disease are urgently required. Our previous study demonstrated that apatinib, an orally selective VEGFR-2 antagonist, is highly effective in T-ALL. Additionally, chidamide, a histone deacetylase inhibitor, has proven to be cytotoxic against T-ALL in preclinical and clinical settings. However, whether the therapeutic interaction of apatinib and chidamide in T-ALL remains unknown. In this study, apatinib and chidamide acted additively to decrease cell viability and induce apoptosis in T-ALL in vitro. Notably, compared with apatinib or chidamide alone, the combinational regimen was more efficient in abrogating the leukemia burden in the spleen and bone marrow of T-ALL patient-derived xenograft (PDX) models. Mechanistically, the additive antileukemia effect of apatinib and chidamide was associated with suppression of mitochondrial respiration and downregulation of the abundance levels of several rate-limiting enzymes that are involved in the citric acid cycle and oxidative phosphorylation (OXPHOS). In addition, apatinib enhanced the antileukemia effect of chidamide on T-ALL via activation of the mitochondria-mediated apoptosis pathway and impediment of mitochondrial biogenesis. Taken together, the study provides a potential role for apatinib in combination with chidamide in the management of T-ALL and warrants further clinical evaluations of this combination in patients with T-ALL.
Collapse
|
26
|
Xu L, Qin Y, Liu M, Jiao J, Tu D, Zhang M, Yan D, Song X, Sun C, Zhu F, Wang X, Sang W, Xu K. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med Chem 2021; 22:1530-1540. [PMID: 34503423 DOI: 10.2174/1871520621666210908103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non-Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. OBJECTIVE The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. METHODS The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. RESULTS NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. CONCLUSION NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongyun Tu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Meng Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xiangmin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| |
Collapse
|
27
|
Guo SS, Mi JQ, Wang J. [The role and research progress of NOTCH1 in T-cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:165-170. [PMID: 33858050 PMCID: PMC8071660 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- S S Guo
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Q Mi
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
28
|
Jiang X, Jiang L, Cheng J, Chen F, Ni J, Yin C, Wang Q, Wang Z, Fang D, Yi Z, Yu G, Zhong Q, Carter BZ, Meng F. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia. J Transl Med 2021; 19:117. [PMID: 33743723 PMCID: PMC7981995 DOI: 10.1186/s12967-021-02789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. Methods Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. Results In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. Conclusions Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02789-3.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingxiu Zhong
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| |
Collapse
|
29
|
Zhao L, Lv C, Sun L, Li Q, Wang Y, Wu M, Wang Y, Guo Z, Bian S, Kong D, Lin L, Wang Y, Zhou J, Li Y. Histone deacetylase inhibitor chidamide regulates the Wnt/β-catenin pathway by MYCN/DKK3 in B-ALL. Invest New Drugs 2021; 39:961-970. [PMID: 33566253 DOI: 10.1007/s10637-021-01079-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/31/2021] [Indexed: 10/25/2022]
Abstract
Our previous studies revealed that MYCN downregulates the expression of DKK3, activates the Wnt/β-catenin signalling pathway at the transcriptional level, and thereby promotes the development of B cell acute lymphocytic leukaemia (B-ALL) but does not affect the methylation of the DKK3 promoter. Some studies have shown that MYCN is associated with histone acetylation. We speculate that histone deacetylase inhibitors (HDACis) can inhibit the Wnt/β-catenin signalling pathway by inhibiting MYCN and increasing the expression of DKK3. Based on previous experiments, we tested this hypothesis by analysing the changes in MYCN, DKK3 and the Wnt/β-catenin signalling pathways in B-ALL cells after treatment with the selective HDACi chidamide. The in vitro and in vivo experiments confirmed that chidamide inhibited the expression of MYCN and increased the expression of DKK3 by inhibiting the activity of histone deacetylase, and these effects resulted in inhibition of the Wnt/β-catenin signalling pathway and the proliferation of B-ALL cells. These findings indicate that chidamide might be used alone or in combination with other chemotherapy regimens for patients with B-ALL and thus provide a new approach to the treatment of B-ALL.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chengfang Lv
- Department of Hematology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuhuang Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Min Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuying Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sicheng Bian
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Leilei Lin
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jin Zhou
- Department of Hematology, Southern University of Science and Technology Hospital, Shenzhen, China.
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Prognostic value of 18F-FDG PET/CT in T-Lymphoblastic lymphoma before and after hematopoietic stem cell transplantation. Clin Transl Oncol 2021; 23:1571-1576. [PMID: 33449269 DOI: 10.1007/s12094-021-02551-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE We aimed to evaluate the prognostic value of 18F-FDG PET/CT in patients with relapsed or refractory T-Lymphoblastic lymphoma (T-LBL) undergoing hematopoietic stem cell transplantation (HSCT). METHODS PET/CT was performed in 21 consecutive relapsed or refractory T-LBL patients scheduled for HSCT. All PET/CT images were assessed using the Deauville criteria, and patients were divided into negative (Deauville ≤ 3) and positive (Deauville > 3) groups for comparison. The predictive value of sex, age, Ann Arbor stage, presence of B symptoms, lactate dehydrogenase level, presence of extranodal disease, and PET/CT results before and after HSCT were evaluated. RESULTS Kaplan-Meier analysis showed that only PET/CT after HSCT (post-PET) was correlated with progression-free survival (PFS) (P = 0.030). The Cox regression model also showed that the post-PET-positive group had a higher hazard ratio (HR) than the negative group (HR = 3.884 and P = 0.049). However, none of the evaluated factors were predictive of overall survival (OS). CONCLUSIONS Pre-PET cannot predict the PFS and OS of patients with T-LBL undergoing HSCT, which means that 18F-FDG PET/CT cannot be used for identifying patients who can benefit from HSCT. Post-PET is not predictive for OS in patients with T-LBL undergoing HSCT. However, post-PET showed strong correlations with PFS, which means that it may be useful for guiding subsequent clinical treatment decisions.
Collapse
|
31
|
Iżykowska K, Rassek K, Korsak D, Przybylski GK. Novel targeted therapies of T cell lymphomas. J Hematol Oncol 2020; 13:176. [PMID: 33384022 PMCID: PMC7775630 DOI: 10.1186/s13045-020-01006-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses. Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which enables the implementation of the research findings in clinical practice. In this review, we present new therapies and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACi), antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lymphoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve outcomes when properly targeted.
Collapse
Affiliation(s)
- Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Dorota Korsak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Grzegorz K Przybylski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland.
| |
Collapse
|