1
|
Kondo T. A new face in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 2024. [PMID: 39425572 DOI: 10.1111/bjh.19845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The prognosis for patients with relapsed/refractory or measurable (minimal) residual disease-positive Philadelphia chromosome (Ph)-positive acute lymphoblastic leukaemia (ALL) is poor. Currently, ponatinib is the only approved tyrosine kinase inhibitor (TKI) that is effective for Ph-positive ALL with the T315I mutation. Although the report by Liu et al. is a retrospective observational study, it offers prospects for the efficacy of chemotherapy combined with the novel third-generation TKI, olverembatinib, in these conditions, which may be validated in future prospective clinical trials. Commentary on: Liu et al. Efficacy and safety of olverembatinib in adult BCR::ABL1-positive ALL with T315I mutation or relapsed/refractory disease. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19804.
Collapse
Affiliation(s)
- Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Liu W, Wang C, Ouyang W, Hao J, Ren J, Peng L, Tang S, Liu Y, Zhu Y, Weng X, Jing D, Chen S, Wang J, Mi JQ. Efficacy and safety of olverembatinib in adult BCR::ABL1-positive ALL with T315I mutation or relapsed/refractory disease. Br J Haematol 2024. [PMID: 39363594 DOI: 10.1111/bjh.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Third-generation tyrosine kinase inhibitors (TKIs) have much potential for the treatment of BCR::ABL1-positive leukaemia, particularly that harbouring the ABL1 T315I mutation. Olverembatinib (HQP1351), a novel third-generation TKI, has favourable efficacy and safety profiles in chronic myeloid leukaemia. Here, we present the clinical findings from 31 BCR::ABL1-positive acute lymphoblastic leukaemia (ALL) patients who received olverembatinib. Among the 14 patients with overt relapsed/refractory (R/R) disease (including 10 with the T315I mutation), 71.4% achieved an overall response. Of the other 17 patients with minimal residual disease (MRD)-positive ALL (including 14 with the T315I mutation), 60.0% and 47.1% achieved MRD flow negativity and complete molecular remission, respectively. With a median follow-up time of 16.3 months, the median event-free survival and overall survival were 3.9 and 8.3 months respectively, in overt R/R patients, and 11.5 and 18.4 months in MRD-positive patients. Allogeneic haematopoietic stem cell transplantation further improved outcomes among responders. The safety profile was generally manageable. This study suggests that olverembatinib-based therapy is another promising option for BCR::ABL1-positive ALL in addition to ponatinib, especially for patients with MRD-positive disease and a single T315I mutation.
Collapse
Affiliation(s)
- Weiyang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanyan Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hao
- Department of Hematology, Bei Zhan Hospital, Shanghai, China
| | - Jiayi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Gökbuget N, Boissel N, Chiaretti S, Dombret H, Doubek M, Fielding A, Foà R, Giebel S, Hoelzer D, Hunault M, Marks DI, Martinelli G, Ottmann O, Rijneveld A, Rousselot P, Ribera J, Bassan R. Management of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024; 143:1903-1930. [PMID: 38306595 DOI: 10.1182/blood.2023023568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
ABSTRACT Experts from the European Leukemia Net (ELN) working group for adult acute lymphoblastic leukemia have identified an unmet need for guidance regarding management of adult acute lymphoblastic leukemia (ALL) from diagnosis to aftercare. The group has previously summarized their recommendations regarding diagnostic approaches, prognostic factors, and assessment of ALL. The current recommendation summarizes clinical management. It covers treatment approaches, including the use of new immunotherapies, application of minimal residual disease for treatment decisions, management of specific subgroups, and challenging treatment situations as well as late effects and supportive care. The recommendation provides guidance for physicians caring for adult patients with ALL which has to be complemented by regional expertise preferably provided by national academic study groups.
Collapse
Affiliation(s)
- Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University, University Hospital, Frankfurt, Germany
| | - Nicolas Boissel
- Hospital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Hervé Dombret
- Leukemia Department, University Hospital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Saint-Louis Research Institute, Université Paris Cité, Paris, France
| | - Michael Doubek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | | | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dieter Hoelzer
- Department of Medicine II, Hematology/Oncology, Goethe University, University Hospital, Frankfurt, Germany
| | - Mathilde Hunault
- Maladies du Sang University Hospital of Angers, FHU Goal, INSERM, National Centre for Scientific Research, Angers, France
| | - David I Marks
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori Dino Amadori, Meldola, Italy
| | - Oliver Ottmann
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Philippe Rousselot
- Clinical Hematology Department, Centre Hospitalier de Versailles, Université Paris-Saclay, Versailles, France
| | - Josep Ribera
- Clinical Hematology Department, Institut Catala d'Oncologia Hospital Germans Trias I Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Renato Bassan
- Division of Hematology, Ospedale dell'Angelo, Mestre-Venice, Italy
| |
Collapse
|
4
|
Affiliation(s)
- Robin Foà
- From Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Sabina Chiaretti
- From Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| |
Collapse
|
5
|
Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers (Basel) 2022; 14:cancers14071805. [PMID: 35406576 PMCID: PMC8997772 DOI: 10.3390/cancers14071805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Outcome of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) dramatically improved during the past 20 years with the advent of tyrosine kinase inhibitors and monoclonal antibodies. Their great efficacy in young and fit patients led to question our reliance on chemotherapy and allogeneic hematopoietic stem cell transplantation. Moreover, these well-tolerated treatments can be safely administrated even in the elderly that represent the majority of Ph+ ALL patient. This review will focus on the recent changes of paradigm in the management of Ph+ ALL patients and the development of novel therapeutic strategies. Abstract Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) is the most common subtype of B-ALL in adults and its incidence increases with age. It is characterized by the presence of BCR-ABL oncoprotein that plays a central role in the leukemogenesis of Ph+ ALL. Ph+ ALL patients traditionally had dismal prognosis and long-term survivors were only observed among patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1). However, feasibility of allo-HSCT is limited in this elderly population. Fortunately, development of increasingly powerful tyrosine kinase inhibitors (TKIs) from the beginning of the 2000′s dramatically improved the prognosis of Ph+ ALL patients with complete response rates above 90%, deep molecular responses and prolonged survival, altogether with good tolerance. TKIs became the keystone of Ph+ ALL management and their great efficacy led to develop reduced-intensity chemotherapy backbones. Subsequent introduction of blinatumomab allowed going further with development of chemo free strategies. This review will focus on these amazing recent advances as well as novel therapeutic strategies in adult Ph+ ALL.
Collapse
Affiliation(s)
- Khalil Saleh
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Alexis Fernandez
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
- INSERM, UMR 1287, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
6
|
Ponatinib in pediatric patients with Philadelphia chromosome-positive leukemia: a retrospective survey of the Japan Children’s Cancer Group. Int J Hematol 2022; 116:131-138. [DOI: 10.1007/s12185-022-03329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
|
7
|
Ansuinelli M, Cesini L, Chiaretti S, Foà R. Emerging tyrosine kinase inhibitors for the treatment of adult acute lymphoblastic leukemia. Expert Opin Emerg Drugs 2021; 26:281-294. [PMID: 34259120 DOI: 10.1080/14728214.2021.1956462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The broadening of targeted and immunotherapeutic strategies markedly impacted on the management of acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKIs) changed the history of Philadelphia-chromosome positive (Ph+) ALL. Nowadays, almost all Ph+ ALL patients treated with TKIs achieve a complete hematologic response, and most become minimal residual disease negative. In Ph- ALL, genomic profiling studies have identified a subtype associated with a high relapse risk and a transcriptional profile similar to that of Ph+ ALL, the so-called Ph-like ALL. Given the high prevalence of kinase-activating lesions in this subset, there is compelling evidence from experimental models and clinical observations favoring TKI administration.Areas covered: We discuss the main findings exploring the efficacy of TKIs in ALL.Expert opinion: The use of more potent TKIs will further enhance the inhibitory activity on leukemia cells and increase the possibility of eradicating the disease at a molecular level. In the future, 'combined' approaches of different inhibitors may be considered to prevent/avoid resistance and/or mutations. A rapid identification of Ph-like ALL patients is needed to propose early TKI-based intervention. Several questions remain open, including the initial TKI choice in Ph+ ALL and whether Ph-like ALL patients might benefit from immunotherapy.
Collapse
Affiliation(s)
- Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Cesini
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
8
|
Balsat M, Cacheux V, Carre M, Tavernier-Tardy E, Thomas X. Treatment and outcome of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults after relapse. Expert Rev Anticancer Ther 2020; 20:879-891. [PMID: 33016157 DOI: 10.1080/14737140.2020.1832890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Despite the significant progress that has been made over the last years in the front-line treatment of Philadelphia (Ph) chromosome-positive acute lymphoblastic leukemia (ALL), relapses are frequent and their treatment remains a challenge, especially among patients with resistant BCR-ABL1 mutations. AREAS COVERED This manuscript reviews available data for the treatment of adult patients with relapsed/refractory Ph-positive ALL, with a focus on the role of tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and immunotherapy. EXPERT OPINION Although a majority of patients with first relapsed Ph-positive ALL respond to subsequent salvage chemotherapy plus TKI combination, their outcomes remain poor. The main predictor of survival is the achievement of major molecular response anytime during the morphological response. More treatment strategies to improve survival are under investigation. Monoclonal antibodies and bispecific antibody constructs hold considerable promise in improving the outcomes of patients with relapsed ALL including Ph-positive ALL.
Collapse
Affiliation(s)
- Marie Balsat
- Hospices Civils de Lyon, Service d'Hématologie Clinique, Centre Hospitalier Lyon-Sud , Pierre-Bénite, France
| | - Victoria Cacheux
- Service de Thérapie Cellulaire et Hématologie Clinique, Centre Hospitalier Universitaire , Clermont-Ferrand, France
| | - Martin Carre
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Grenoble Alpes , Grenoble, France
| | - Emmanuelle Tavernier-Tardy
- Service d'Hématologie Clinique, Institut de Cancérologie de la Loire Lucien Neuwirth , Saint-Etienne, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Service d'Hématologie Clinique, Centre Hospitalier Lyon-Sud , Pierre-Bénite, France
| |
Collapse
|