1
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Wang Y, Xiao L, Yin L, Zhou L, Deng Y, Deng H. Diagnosis, treatment, and genetic characteristics of blastic plasmacytoid dendritic cell neoplasm: A review. Medicine (Baltimore) 2023; 102:e32904. [PMID: 36800625 PMCID: PMC9936012 DOI: 10.1097/md.0000000000032904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a highly aggressive and extremely rare hematologic disease with a poor prognosis, involving mainly the skin and bone marrow. The immunophenotype of these tumor cells is characterized by the expression of CD4, CD56, CD123, TCL-1, and CD303. To date, no consensus has been reached on the standard of care for BPDCN. Currently, clinical treatment is mainly based on high-dose chemotherapy combined with hematopoietic stem cell transplantation. However, this treatment method has limitations for elderly, frail, and relapsed/refractory patients. In recent years, breakthroughs in molecular biology and genetics have not only provided new ideas for the diagnosis of BPDCN but also helped develop targeted treatment strategies for this disease. The emergence of targeted drugs has filled the gap left by traditional therapies and shown great clinical promise. This article focuses on the latest advances in genetics and targeted therapies for BPDCN, especially the emerging therapies that may provide new ideas for the clinical treatment of BPDCN.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lili Yin
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lv Zhou
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanjuan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Mol. Med. & Genet. Center, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Mol. Med. & Genet. Center, Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Huan Deng, Department of Pathology, Fourth Affiliated Hospital of Nanchang University, 133 South Guangchang Road, Nanchang, Jiangxi 330003, China (e-mail: )
| |
Collapse
|
3
|
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers (Basel) 2022; 14:cancers14174132. [PMID: 36077669 PMCID: PMC9454802 DOI: 10.3390/cancers14174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Differential diagnosis between Blastic pDC Neoplasm (BPDCN) and Acute Myeloid Leukemia with pDC expansion (pDC-AML) is particularly challenging, and genomic features can help in diagnosis. This review aims at clarifying recent data on genomics features because the past five years have generated a large amount of original data regarding pDC neoplasms. The genetic landscape of BPDCN is now well-defined, with important updates concerning MYC/MYC rearrangements, but also epigenetic defects and novel concepts in oncogenic and immune pathways. Concerning pDC-AML, they now appear to exhibit an original mutation landscape, especially with RUNX1 mutations, which is of interest for diagnostic criteria and for therapeutic purposes. We highlight here these two different profiles, which contribute to differential diagnosis between BPDCN and pDC-AML. This point is particularly important for the study of different therapeutic strategies between BPDCN and AML. Abstract Plasmacytoid Dendritic Cells (pDC) are type I interferon (IFN)-producing cells that play a key role in immune responses. Two major types of neoplastic counterparts for pDC are now discriminated: Blastic pDC Neoplasm (BPDCN) and Mature pDC Proliferation (MPDCP), associated with myeloid neoplasm. Two types of MPDCP are now better described: Chronic MyeloMonocytic Leukemia with pDC expansion (pDC-CMML) and Acute Myeloid Leukemia with pDC expansion (pDC-AML). Differential diagnosis between pDC-AML and BPDCN is particularly challenging, and genomic features can help for diagnosis. Here, we systematically review the cytogenetic, molecular, and transcriptional characteristics of BPDCN and pDC-AML. BPDCN are characterized by frequent complex karyotypes with recurrent MYB/MYC rearrangements as well as recurrent deletions involving ETV6, IKZF1, RB1, and TP53 loci. Epigenetic and splicing pathways are also particularly mutated, while original processes are dysregulated, such as NF-kB, TCF4, BCL2, and IFN pathways; neutrophil-specific receptors; and cholinergic signaling. In contrast, cytogenetic abnormalities are limited in pDC-AML and are quite similar to other AML. Interestingly, RUNX1 is the most frequently mutated gene (70% of cases). These typical genomic features are of potential interest for diagnosis, and also from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, F-25000 Besancon, France
- Laboratoire d’Hématologie et d’Immunologie Régional, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besancon, France
- Correspondence:
| | - Mary Callanan
- INSERM 1231 and 1209, University of Bourgogne-Franche Comté, F-21000 Dijon, France
- Service d’Oncologie Génétique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Christine Lefebvre
- INSERM 1209 and CNRS UMR 5309, Université Grenoble-Alpes, F-38000 Grenoble, France
- Laboratoire de Génétique des hémopathies, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
4
|
Bone marrow clonal hematopoiesis is highly prevalent in blastic plasmacytoid dendritic cell neoplasm and frequently sharing a clonal origin in elderly patients. Leukemia 2022; 36:1343-1350. [DOI: 10.1038/s41375-022-01538-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
|
5
|
Yin CC, Pemmaraju N, You MJ, Li S, Xu J, Wang W, Tang Z, Alswailmi O, Bhalla KN, Qazilbash MH, Konopleva M, Khoury JD. Integrated Clinical Genotype-Phenotype Characteristics of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers (Basel) 2021; 13:cancers13235888. [PMID: 34884997 PMCID: PMC8656770 DOI: 10.3390/cancers13235888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive neoplasm derived from plasmacytoid dendritic cells. While advances in understanding the pathophysiology of the disease have been made, integrated systematic analyses of the spectrum of immunophenotypic and molecular alterations in real-world clinical cases remain limited. We performed mutation profiling of 50 BPDCN cases and assessed our findings in the context of disease immunophenotype, cytogenetics, and clinical characteristics. Patients included 42 men and 8 women, with a median age of 68 years (range, 14-84) at diagnosis. Forty-two (84%) patients had at least one mutation, and 23 (46%) patients had ≥3 mutations. The most common mutations involved TET2 and ASXL1, detected in 28 (56%) and 23 (46%) patients, respectively. Co-existing TET2 and ASXL1 mutations were present in 17 (34%) patients. Other recurrent mutations included ZRSR2 (16%), ETV6 (13%), DNMT3A (10%), NRAS (10%), IKZF1 (9%), SRSF2 (9%), IDH2 (8%), JAK2 (6%), KRAS (4%), NOTCH1 (4%), and TP53 (4%). We also identified mutations that have not been reported previously, including ETNK1, HNRNPK, HRAS, KDM6A, RAD21, SF3A1, and SH2B3. All patients received chemotherapy, and 20 patients additionally received stem cell transplantation. With a median follow-up of 10.5 months (range, 1-71), 21 patients achieved complete remission, 4 had persistent disease, and 24 died. Patients younger than 65 years had longer overall survival compared to those who were ≥65 years (p = 0.0022). Patients who had ≥3 mutations or mutations in the DNA methylation pathway genes had shorter overall survival (p = 0.0119 and p = 0.0126, respectively). Stem cell transplantation significantly prolonged overall survival regardless of mutation status. In conclusion, the majority of patients with BPDCN have somatic mutations involving epigenetic regulators and RNA splicing factors, in addition to ETV6 and IKZF1, which are also frequently mutated. Older age, multiple mutations, and mutations in the DNA methylation pathway are poor prognostic factors.
Collapse
Affiliation(s)
- C. Cameron Yin
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
- Correspondence: (C.C.Y.); (J.D.K.); Tel.: +1-(713)-745-6134 (C.C.Y.); +1-(713)-745-6452 (J.D.K.)
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.); (K.N.B.); (M.K.)
| | - M. James You
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Wei Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Omar Alswailmi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
| | - Kapil N. Bhalla
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.); (K.N.B.); (M.K.)
| | - Muzaffar H. Qazilbash
- Department of Stem Cell Transplantation, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Marina Konopleva
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.); (K.N.B.); (M.K.)
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.Y.); (S.L.); (J.X.); (W.W.); (Z.T.); (O.A.)
- Correspondence: (C.C.Y.); (J.D.K.); Tel.: +1-(713)-745-6134 (C.C.Y.); +1-(713)-745-6452 (J.D.K.)
| |
Collapse
|