1
|
Coupland SE, Du MQ, Ferry JA, de Jong D, Khoury JD, Leoncini L, Naresh KN, Ott G, Siebert R, Xerri L. The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J Pathol 2024; 262:255-270. [PMID: 38180354 DOI: 10.1002/path.6246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
The fifth edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) is the product of an evidence-based evolution of the revised fourth edition with wide multidisciplinary consultation. Nonetheless, while every classification incorporates scientific advances and aims to improve upon the prior version, medical knowledge remains incomplete and individual neoplasms may not be easily subclassified in a given scheme. Thus, optimal classification requires ongoing study, and there are certain aspects of some entities and subtypes that require further refinements. In this review, we highlight a selection of these challenging areas to prompt more research investigations. These include (1) a 'placeholder term' of splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN) to accommodate many of the splenic lymphomas previously classified as hairy cell leukaemia variant and B-prolymphocytic leukaemia, a clear new start to define their pathobiology; (2) how best to classify BCL2 rearrangement negative follicular lymphoma including those with BCL6 rearrangement, integrating the emerging new knowledge on various germinal centre B-cell subsets; (3) what is the spectrum of non-IG gene partners of MYC translocation in diffuse large B-cell lymphoma/high-grade B-cell lymphoma and how they impact MYC expression and clinical outcome; how best to investigate this in a routine clinical setting; and (4) how best to define high-grade B-cell lymphoma not otherwise specified and high-grade B-cell lymphoma with 11q aberrations to distinguish them from their mimics and characterise their molecular pathogenetic mechanism. Addressing these questions would provide more robust evidence to better define these entities/subtypes, improve their diagnosis and/or prognostic stratification, leading to better patient care. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph D Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Luc Xerri
- Institut Paoli-Calmettes, CRCM and Aix-Marseille University, Marseille, France
| |
Collapse
|
2
|
Qiu L, Lin P, Khanlari M, Xu J, Cohen EN, Garces S, Miranda RN, Wang W, Fang H, Bueso-Ramos CE, Medeiros LJ, Li S. The Clinicopathologic Features and Molecular Signatures of Blastoid High-Grade B Cell Lymphoma, Not Otherwise Specified. Mod Pathol 2023; 36:100349. [PMID: 37820764 DOI: 10.1016/j.modpat.2023.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
A small subset of high-grade B-cell lymphoma (HGBL) with blastoid morphology remains poorly understood. We assessed 55 cases of blastoid HGBL, not otherwise specified (NOS) and compared their clinicopathologic characteristics with those of 81 non-blastoid HGBL-NOS and 62 blastoid HGBL with MYC and BCL2, with or without BCL6 rearrangements (double/triple-hit lymphoma [D/THL]). Patients with blastoid HGBL-NOS showed similar clinicopathologic features to patients with blastoid D/THLs and non-blastoid HGBL-NOS, except more frequently with a history of low-grade B-cell lymphoma, bone marrow involvement, and BCL2 rearrangement (P < .05) compared to the latter. MYC rearrangement (MYC-R), detected in 40% of blastoid HGBL-NOS, was associated with aggressive clinicopathologic features and poorer overall survival, even worse than that of blastoid D/THL (P < .05). Transcriptome profiling revealed a distinct gene expression pattern with differentially expressed genes enriched in MYC and P53-targeted genes in MYC-R blastoid HGBL-NOS. Fifty-two percent of blastoid HGBL-NOS had a double hit-like signature, similar to non-blastoid HGBL-NOS (P = .73). The overall survival of the blastoid HGBL-NOS group was similar to that of the blastoid D/THL group but appeared poorer than that of its non-blastoid counterparts (P = .07). Taken together, blastoid HGBL-NOS is an aggressive B-cell lymphoma that shares overlapping clinicopathologic and genetic features with non-blastoid HGBL-NOS. MYC-R in patients with blastoid HGBL-NOS identifies a highly aggressive subgroup with distinct aggressive clinicopathologic features, unique molecular signatures, and a dismal clinical outcome.
Collapse
Affiliation(s)
- Lianqun Qiu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mahsa Khanlari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Frigault MM, Mithal A, Wong H, Stelte-Ludwig B, Mandava V, Huang X, Birkett J, Johnson AJ, Izumi R, Hamdy A. Enitociclib, a Selective CDK9 Inhibitor, Induces Complete Regression of MYC+ Lymphoma by Downregulation of RNA Polymerase II Mediated Transcription. CANCER RESEARCH COMMUNICATIONS 2023; 3:2268-2279. [PMID: 37882668 PMCID: PMC10634346 DOI: 10.1158/2767-9764.crc-23-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Double-hit diffuse large B-cell lymphoma (DH-DLBCL) is an aggressive, and often refractory, type of B-cell non-Hodgkin lymphoma (NHL) characterized by rearrangements in MYC and BCL2. Cyclin-dependent kinase 9 (CDK9) regulates transcriptional elongation and activation of transcription factors, including MYC, making it a potential targeted approach for the treatment of MYC+ lymphomas. Enitociclib is a well-tolerated and clinically active CDK9 inhibitor leading to complete metabolic remissions in 2 of 7 patients with DH-DLBCL treated with once weekly 30 mg intravenous administration. Herein, we investigate the pharmacodynamic effect of CDK9 inhibition in preclinical models and in blood samples from patients [DH-DLBCL (n = 10) and MYC+ NHL (n = 5)] treated with 30 mg i.v. once weekly enitociclib. Enitociclib shows significant regulation of RNA polymerase II Ser2 phosphorylation in a MYC-amplified SU-DHL-4 cell line and depletion of MYC and antiapoptosis protein MCL1 in SU-DHL-4 and MYC-overexpressing SU-DHL-10 cell lines in vitro. Tumor growth inhibition reaching 0.5% of control treated SU-DHL-10 xenografts is achieved in vivo and MYC and MCL1 depletion as well as evidence of apoptosis activation after enitociclib treatment is demonstrated. An unbiased analysis of the genes affected by CDK9 inhibition in both cell lines demonstrates that RNA polymerase II and transcription pathways are primarily affected and novel enitociclib targets such as PHF23 and TP53RK are discovered. These findings are recapitulated in blood samples from enitociclib-treated patients; while MYC downregulation is most robust with enitociclib treatment, other CDK9-regulated targets may be MYC independent delivering a transcriptional downregulation via RNA polymerase II. SIGNIFICANCE MYC+ lymphomas are refractory to standard of care and novel treatments that downregulate MYC are needed. The utility of enitociclib, a selective CDK9 inhibitor in this patient population, is demonstrated in preclinical models and patients. Enitociclib inhibits RNA polymerase II function conferring a transcriptional shift and depletion of MYC and MCL1. Enitociclib intermittent dosing downregulates transcription factors including MYC, providing a therapeutic window for durable responses in patients with MYC+ lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Huang
- Vincerx Pharma, Inc., Palo Alto, California
| | | | | | | | | |
Collapse
|
4
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
5
|
Li S, Qiu L, Xu J, Lin P, Ok CY, Tang G, McDonnell TJ, James You M, Khanlari M, Miranda RN, Medeiros LJ. High-grade B-cell lymphoma (HGBL)-NOS is clinicopathologically and genetically more similar to DLBCL/HGBL-DH than DLBCL. Leukemia 2023; 37:422-432. [PMID: 36513804 DOI: 10.1038/s41375-022-01778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
High-grade B-cell lymphoma, not otherwise specified (HGBL-NOS) is rare and data focused on these neoplasms is lacking. We studied the clinicopathologic and genetic features of 136 HGBL-NOS patients and compared them to patients with DLBCL/HGBL-DH (n = 224, defined by 5th Edition WHO) and DLBCL (n = 217). HGBL-NOS patients had clinical features similar to DLBCL/HGBL-DH patients. MYC rearrangement (MYC-R) was present in 43% of HGBL-NOS. With induction regimen similar to DLBCL/HGBL-DH patients, HGBL-NOS patients had a median overall survival (OS) of 28.9 months, similar to DLBCL/HGBL-DH (p = 0.48) but inferior to DLBCL patients (p = 0.03). R-EPOCH induction was associated with improved OS compared with R-CHOP. MYC-R, history of lymphoma, and high IPI were independent adverse prognostic factors in HGBL-NOS patients. Whole transcriptome profiling performed on a subset of HGBL-NOS cases showed a profile more similar to DLBCL/HGBL-DH than to DLBCL; 53% of HGBL-NOS had a DH-like signature (DH-like-Sig) and were enriched for MYC-R. DH-like-Sig+ HGBL-NOS patients had a poorer OS than DH-like-Sig-negative patients (p = 0.04). In conclusion, HGBL-NOS has clinicopathologic features and a gene expression profile more similar to DLBCL/HGBL-DH than to DLBCL. Cases of HGBL-NOS frequently carry MYC-R and have a DH-like-Sig+. R-EPOCH induction in HGBL-NOS appears associated with improved OS compared with standard R-CHOP.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States.
| | - Lianqun Qiu
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Jie Xu
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Pei Lin
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Chi Young Ok
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Guilin Tang
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Timothy J McDonnell
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - M James You
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Mahsa Khanlari
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Roberto N Miranda
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|