1
|
Bisig B, Lefort K, Carras S, de Leval L. Clinical use of circulating tumor DNA analysis in patients with lymphoma. Hum Pathol 2024:105679. [PMID: 39491629 DOI: 10.1016/j.humpath.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The analysis of circulating tumor DNA (ctDNA) in liquid biopsy specimens has an established role for the detection of predictive molecular alterations and acquired resistance mutations in several tumors. The low-invasiveness of this approach allows for repeated sampling and dynamic monitoring of disease evolution. Originating from the entire body tumor bulk, plasma-derived ctDNA reflects intra- and interlesional genetic heterogeneity. In the management of lymphoma patients, ctDNA quantification at various timepoints of the patient's clinical history is emerging as a complementary tool that may improve risk stratification, assessment of treatment response and early relapse detection during follow-up, most prominently in patients with diffuse large B-cell lymphoma or classic Hodgkin lymphoma. While liquid biopsies have not yet entered standard-of-care treatment protocols in these settings, several trials have provided evidence that at least a subset of lymphoma patients may benefit from the introduction of liquid biopsies into daily clinical care. In parallel, continuous technological developments have enabled highly sensitive ctDNA assessment methods, which span from locus-specific techniques identifying single hotspot mutations, to sequencing panels and genome-wide approaches that explore broader genetic and epigenetic alterations. Here, we provide an overview of current methods and ongoing technical developments for ctDNA evaluation. We also summarize the most important data from a selection of clinical studies that have explored the clinical use of ctDNA in several lymphoma entities.
Collapse
Affiliation(s)
- Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Karine Lefort
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sylvain Carras
- Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Department of Molecular Biology and Department of Oncohematology, University Hospital Grenoble and University Grenoble Alpes, Grenoble, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
2
|
Li JY, Zuo LP, Xu J, Sun CY. Clinical applications of circulating tumor DNA in hematological malignancies: From past to the future. Blood Rev 2024; 68:101237. [PMID: 39261219 DOI: 10.1016/j.blre.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Liquid biopsy, particularly circulating tumor DNA (ctDNA), has drawn a lot of attention as a non- or minimal-invasive detection approach for clinical applications in patients with cancer. Many hematological malignancies are well suited for serial and repeated ctDNA surveillance due to relatively high ctDNA concentrations and high loads of tumor-specific genetic and epigenetic abnormalities. Progress of detecting technology in recent years has improved sensitivity and specificity significantly, thus broadening and strengthening the potential utilities of ctDNA including early diagnosis, prognosis estimation, treatment response evaluation, minimal residual disease monitoring, targeted therapy selection, and immunotherapy surveillance. This manuscript reviews the detection methodologies, clinical application and future challenges of ctDNA in hematological malignancies, especially for lymphomas, myeloma and leukemias.
Collapse
Affiliation(s)
- Jun-Ying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Li-Ping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Huang DZ, Zhang X, Rao J. [Progression and application of circulating tumor DNA in lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:878-882. [PMID: 39414617 PMCID: PMC11518914 DOI: 10.3760/cma.j.cn121090-20240528-00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 10/18/2024]
Abstract
Lymphomas are a highly heterogeneous group of tumors that are classified into several subtypes. The gold standard method for the molecular profiling of lymphoma is based on invasive lymph node or tissue biopsy. However, this method cannot accurately capture spatial tumor heterogeneity in each patient as well as systemic tumor invasion and tumor burden. Circulating tumor DNA (ctDNA) is an emerging and highly versatile biomarker that overcomes the basic limitations of imaging scanning and tissue biopsy; has the characteristics of being simple, rapid, and non-invasive; and has good specificity and high sensitivity. ctDNA testing has been applied to a variety of subtypes of lymphoma and has been used for somatic mutation genotyping, efficacy monitoring during treatment, detection of minimal residual disease, and the prediction of survival, which may help clinicians make better clinical decisions in the diagnosis and treatment of lymphoma patients. Furthermore, this study also aims to review the different methods of ctDNA analysis and describe the specific applications of ctDNA in different lymphoma subtypes.
Collapse
Affiliation(s)
- D Z Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China Jinfeng Laboratory, Chongqing 401329, China
| | - J Rao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| |
Collapse
|
4
|
Fernández S, Cereceda L, Díaz E, Figueroa S, Reguera L, Menéndez V, Solórzano JL, Montalbán C, Estévez M, García JF. Circulating tumor DNA for monitoring classic Hodgkin lymphoma patients: Correlation with FDG-PET/CT. EJHAEM 2024; 5:70-75. [PMID: 38406538 PMCID: PMC10887323 DOI: 10.1002/jha2.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 02/27/2024]
Abstract
The value of circulating tumor DNA (ctDNA) as a biomarker of disease activity in classic Hodgkin lymphoma (cHL) patients has not yet been well established. By profiling primary tumors and ctDNA, we identified common variants between primary tumors and longitudinal plasma samples in most of the cases, confirming high spatial and temporal heterogeneity. Although ctDNA analyses mirrored HRS cell genetics overall, the prevalence of variants shows that none of them can be used as a single biomarker. Conversely, the estimation of hGE/mL, based on measures of total ctDNA, reflects disease activity and is almost perfectly correlated with standard parameters such as PET/CT that are associated with refractoriness.
Collapse
Affiliation(s)
- Sara Fernández
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | - Laura Cereceda
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Eva Díaz
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | - Sasha Figueroa
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Laura Reguera
- Nuclear Medicine DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Victoria Menéndez
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | | | - Carlos Montalbán
- Hematology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Mónica Estévez
- Hematology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Juan F. García
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
- Center for Biomedical Network Research on Cancer (CIBERONC)ISCIIIMadridSpain
| |
Collapse
|
5
|
Diez-Feijóo R, Andrade-Campos M, Gibert J, Sánchez-González B, Fernández-Ibarrondo L, Fernández-Rodríguez C, Garcia-Gisbert N, Camacho L, Lafuente M, Vázquez I, Colomo L, Salar A, Bellosillo B. Cell-Free DNA as a Biomarker at Diagnosis and Follow-Up in 256 B and T-Cell Lymphomas. Cancers (Basel) 2024; 16:321. [PMID: 38254810 PMCID: PMC10813584 DOI: 10.3390/cancers16020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) analysis has become a promising tool for the diagnosis, prognosis, and monitoring of lymphoma cases. Until now, research in this area has mainly focused on aggressive lymphomas, with scanty information from other lymphoma subtypes. METHODS We selected 256 patients diagnosed with lymphomas, including a large variety of B-cell and T-cell non-Hodgkin and Hodgkin lymphomas, and quantified cfDNA from plasma at the time of diagnosis. We further selected 49 large B-cell lymphomas (LBCL) and analyzed cfDNA levels at diagnosis (pre-therapy) and after therapy. In addition, we performed NGS on cfDNA and tissue in this cohort of LBCL. RESULTS Lymphoma patients showed a statistically significant higher cfDNA concentration than healthy controls (mean 53.0 ng/mL vs. 5.6 ng/mL, p < 0.001). The cfDNA concentration was correlated with lymphoma subtype, lactate dehydrogenase, the International Prognostic Index (IPI) score, Ann Arbor (AA), and B-symptoms. In 49 LBCL cases, the cfDNA concentration decreased after therapy in cases who achieved complete response (CR) and increased in non-responders. The median cfDNA at diagnosis of patients who achieved CR and later relapsed was higher (81.5 ng/mL) compared with levels of those who did not (38.6 ng/mL). A concordance of 84% was observed between NGS results in tumor and cfDNA samples. Higher VAF in cfDNA is correlated with advanced stage and bulky disease. CONCLUSIONS cfDNA analysis can be easily performed in almost all lymphoma cases. The cfDNA concentration correlated with the characteristics of the aggressiveness of the lymphomas and, in LBCL, with the response achieved after therapy. These results support the utility of cfDNA analysis as a complementary tool in the management of lymphoma patients.
Collapse
Affiliation(s)
- Ramón Diez-Feijóo
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Marcio Andrade-Campos
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Blanca Sánchez-González
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Lierni Fernández-Ibarrondo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Concepción Fernández-Rodríguez
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Nieves Garcia-Gisbert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Laura Camacho
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Marta Lafuente
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Ivonne Vázquez
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Luis Colomo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Antonio Salar
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Beatriz Bellosillo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| |
Collapse
|
6
|
Soueidy C, Kourie HR. Updates in the Management of Primary Mediastinal B Cell Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:866-873. [PMID: 37722943 DOI: 10.1016/j.clml.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
Primary mediastinal B cell lymphoma (PMBCL) is considered a distinct pathology according to the WHO classification of lymphoid malignancies. Patients have a better prognosis after the addition of Rituximab to anthracycline-based chemotherapy. The role of consolidative radiotherapy is controversial after the approval of dose-adjusted R-EPOCH and the selection of patients to undergo radiotherapy is based on end-of-therapy PET CT. In the relapsed/refractory setting, new approved drugs and other under investigation have improved patient outcomes. This review summarizes the different treatment modalities in (PMBCL) in the frontline and the relapsed/refractory settings.
Collapse
Affiliation(s)
- Charbel Soueidy
- Hematology Oncology Department, Hotel Dieu de France Hospital, Beirut, Lebanon.
| | | |
Collapse
|
7
|
Decruyenaere P, Giuili E, Verniers K, Anckaert J, De Grove K, Van der Linden M, Deeren D, Van Dorpe J, Offner F, Vandesompele J. Exploring the cell-free total RNA transcriptome in diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma patients as biomarker source in blood plasma liquid biopsies. Front Oncol 2023; 13:1221471. [PMID: 37954086 PMCID: PMC10634215 DOI: 10.3389/fonc.2023.1221471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-cell lymphoma (PMBCL) are aggressive histological subtypes of non-Hodgkin's lymphoma. Improved understanding of the underlying molecular pathogenesis has led to new classification and risk stratification tools, including the development of cell-free biomarkers through liquid biopsies. The goal of this study was to investigate cell-free RNA (cfRNA) biomarkers in DLBCL and PMBCL patients. Materials and methods Blood plasma samples (n=168) and matched diagnostic formalin-fixed paraffin-embedded (FFPE) tissue samples (n=69) of DLBCL patients, PMBCL patients and healthy controls were collected between 2016-2021. Plasma samples were collected at diagnosis, at interim evaluation, after treatment, and in case of refractory or relapsed disease. RNA was extracted from 200 µl plasma using the miRNeasy serum/plasma kit and from FFPE tissue using the miRNeasy FFPE kit. RNA was subsequently sequenced on a NovaSeq 6000 instrument using the SMARTer Stranded Total RNA-seq pico v3 library preparation kit. Results Higher cfRNA concentrations were demonstrated in lymphoma patients compared to healthy controls. A large number of differentially abundant genes were identified between the cell-free transcriptomes of DLBCL patients, PMBCL patients, and healthy controls. Overlap analyses with matched FFPE samples showed that blood plasma has a unique transcriptomic profile that significantly differs from that of the tumor tissue. As a good concordance between tissue-derived gene expression and the immunohistochemistry Hans algorithm for cell-of-origin (COO) classification was demonstrated in the FFPE samples, but not in the plasma samples, a 64-gene cfRNA classifier was developed that can accurately determine COO in plasma. High plasma levels of a 9-gene signature (BECN1, PRKCB, COPA, TSC22D3, MAP2K3, UQCRHL, PTMAP4, EHD1, NAP1L1 pseudogene) and a 5-gene signature (FTH1P7, PTMAP4, ATF4, FTH1P8, ARMC7) were significantly associated with inferior progression-free and overall survival in DLBCL patients, respectively, independent of the NCCN-IPI score. Conclusion Total RNA sequencing of blood plasma samples allows the analysis of the cell-free transcriptome in DLBCL and PMBCL patients and demonstrates its unexplored potential in identifying diagnostic, cell-of-origin, and prognostic cfRNA biomarkers.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Edoardo Giuili
- Interuniversity Institute of Bioinformatics in Brussels (IB), Free University of Brussels, Brussels, Belgium
- Department of Biotechnology and Pharmacy, University of Bologna, Bologna, Italy
| | - Kimberly Verniers
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Grove
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | | | - Dries Deeren
- Department of Hematology, Algemeen Ziekenhuis (AZ) Delta Roeselare-Menen, Roeselare, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Figaredo G, Martín-Muñoz A, Barrio S, Parrilla L, Campos-Martín Y, Poza M, Rufián L, Algara P, De La Torre M, Jiménez Ubieto A, Martínez-López J, Casado LF, Mollejo M. Genetic Profiling of Cell-Free DNA in Liquid Biopsies: A Complementary Tool for the Diagnosis of B-Cell Lymphomas and the Surveillance of Measurable Residual Disease. Cancers (Basel) 2023; 15:4022. [PMID: 37627050 PMCID: PMC10452485 DOI: 10.3390/cancers15164022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE To assess the potential value of LiqBio as a complementary tool for diagnosis and surveillance of BCL. METHODS This prospective multi-center study included 78 patients (25 follicular lymphomas (FL) and 53 large B-cell lymphomas (LBCL)). We performed next-generation sequencing (NGS) of cfDNA LiqBio and paired gDNA tissue biopsies at diagnosis and compared the mutational statuses. Also, through NGS of LiqBio, we identified MRD biomarkers and compared this novel LiqBio-MRD method with PET/CT in detecting MRD at follow-up. RESULTS We identified mutations in 71% of LiqBio and 95% of tissue biopsies, and found a correlation between variant allele frequency of somatic mutations. Additionally, we identified mutations in 73% of LiqBio from patients with no available tissue samples or no mutations in them. Regarding the utility of LiqBio-MRD as a dynamic monitoring tool, when compared with the PET/CT method, a lower sensitivity was observed for LiqBio-MRD at 92.3% (vs. 100% for PET/CT), but a higher specificity of 91.3% (vs. 86.9% for PET/CT). CONCLUSION Genetic profiling of tumor cfDNA in plasma LiqBio is a complementary tool for BCL diagnosis and MRD surveillance.
Collapse
Affiliation(s)
- Gloria Figaredo
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Alejandro Martín-Muñoz
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
| | - Santiago Barrio
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
- Computational Science Department, Carlos III University, Ronda de Toledo, 1, 28005 Madrid, Spain
| | - Laura Parrilla
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Yolanda Campos-Martín
- Biobank Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| | - María Poza
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Laura Rufián
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Patrocinio Algara
- Genetics Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| | - Marina De La Torre
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Ana Jiménez Ubieto
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Joaquín Martínez-López
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Luis-Felipe Casado
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Manuela Mollejo
- Anatomopathology Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| |
Collapse
|
9
|
NFkB Pathway and Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10092153. [PMID: 36140254 PMCID: PMC9495867 DOI: 10.3390/biomedicines10092153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The tumor cells that drive classical Hodgkin lymphoma (cHL), namely, Hodgkin and Reed-Sternberg (HRS) cells, display hallmark features that include their rareness in contrast with an extensive and rich reactive microenvironment, their loss of B-cell phenotype markers, their immune escape capacity, and the activation of several key biological pathways, including the constitutive activation of the NFkB pathway. Both canonical and alternative pathways are deregulated by genetic alterations of their components or regulators, EBV infection and interaction with the microenvironment through multiple receptors, including CD30, CD40, BAFF, RANK and BCMA. Therefore, NFkB target genes are involved in apoptosis, cell proliferation, JAK/STAT pathway activation, B-cell marker expression loss, cellular interaction and a positive NFkB feedback loop. Targeting this complex pathway directly (NIK inhibitors) or indirectly (PIM, BTK or NOTCH) remains a challenge with potential therapeutic relevance. Nodular predominant HL (NLPHL), a distinct and rare HL subtype, shows a strong NFkB activity signature because of mechanisms that differ from those observed in cHL, which is discussed in this review.
Collapse
|
10
|
Rivas-Delgado A, Nadeu F, Andrade-Campos M, López C, Enjuanes A, Mozas P, Frigola G, Colomo L, Sanchez-Gonzalez B, Villamor N, Beà S, Campo E, Salar A, Giné E, López-Guillermo A, Bellosillo B. Cell-Free DNA for Genomic Analysis in Primary Mediastinal Large B-Cell Lymphoma. Diagnostics (Basel) 2022; 12:diagnostics12071575. [PMID: 35885481 PMCID: PMC9324191 DOI: 10.3390/diagnostics12071575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing of cell-free DNA (cfDNA) has emerged as a promising noninvasive approach in lymphomas, being particularly useful when a biopsy specimen is not available for molecular analysis, as it frequently occurs in primary mediastinal large B-cell lymphoma (PMBL). We used cfDNA for genomic characterization in 20 PMBL patients by means of a custom NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for copy number analysis (CNA) in a real-life setting. Appropriate cfDNA to perform the analyses was obtained in 18/20 cases. The sensitivity of cfDNA to detect the mutations present in paired FFPE samples was 69% (95% CI: 60–78%). The mutational landscape found in cfDNA samples was highly consistent with that of the tissue, with the most frequently mutated genes being B2M (61%), SOCS1 (61%), GNA13 (44%), STAT6 (44%), NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). Overall, we observed a 75% concordance to detect CNA gains/losses between DNA microarray and low-pass WGS. The sensitivity of low-pass WGS was remarkably higher for clonal CNA (18/20, 90%) compared to subclonal alterations identified by DNA microarray. No significant associations between cfDNA amount and tumor burden or outcome were found. cfDNA is an excellent alternative source for the accurate genetic characterization of PMBL cases.
Collapse
Affiliation(s)
- Alfredo Rivas-Delgado
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Correspondence: ; Tel.: +34-932275428
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Marcio Andrade-Campos
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Cristina López
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Enjuanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Pablo Mozas
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Luis Colomo
- Pathology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Blanca Sanchez-Gonzalez
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Neus Villamor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Antonio Salar
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Eva Giné
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Armando López-Guillermo
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Bellosillo
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Pathology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| |
Collapse
|